2 research outputs found

    Model Driven Engineering Benefits for High Level Synthesis

    Get PDF
    This report presents the benefits of using the Model Driven Engineering (MDE) methodology to solve major difficulties encountered by usual high level synthesis (HLS) flows. These advantages are highlighted in a design space exploration environment we propose. MDE is the skeleton of our HLS flow dedicated to intensive signal processing to demonstrate the expected benefits of these software technologies extended to hardware design. Both users and designers of the design flow benefit from the MDE methodology, participating to a concrete and effective advancement in the high level synthesis research domain. The flow is automatized from UML specifications to VHDL code generation and has been successfully evaluated for the conception of a video processing application

    A High Level Synthesis Flow Using Model Driven Engineering

    Get PDF
    Intensive Signal Processing (ISP) applications handle large amounts of data and are characterized by hierarchical and data parallel tasks, which manip- ulate multidimensional data arrays according to complex data dependencies. Performance requirements often preclude ISP applications from being im- plemented purely in software and instead call for using custom and efficient hardware accelerators. A hardware accelerator is an electronic design dedi- cated to the execution of a specific application. Its hardware architecture can be designed for a maximal parallelization of the algorithm needed to execute its application and for optimal execution support for regular and repetitive tasks. However, the complexity of hardware accelerators makes them difficult to manipulate at low abstraction levels (in a Hardware Description Language (HDL) for instance). The description of complex ISP applications is also error prone and tedious when using tools that constrain the number of dimensions of data arrays. High Level Synthesis (HLS) seeks to simplify the design of hardware accel- erators by describing applications at a high abstraction level and by generat- ing the corresponding low level implementation. Application specification is easier at a high abstraction level since hardware designers do not need to han- dle all low level implementation details. HLS thus aims to achieve algorithm- architecture matching by construction, through the automated synthesis of a hardware architecture for an application specified at a high level. The automatic generation of low level implementations drastically reduces non- recurring engineering costs and the time to market compared to hand-tuned implementations in HDL. For these reasons, HLS tools have been increasingly successful among the hardware designer community. This trend is followed by the continual integration of new capabilities and functionality in the tools. Therefore, successful HLS has to support rapidly evolving technologies and be maintainable in order to capitalize on efforts. We present some design challenges faced by HLS and how model-driven engineering can meet them
    corecore