
HAL Id: inria-00524821
https://hal.inria.fr/inria-00524821

Submitted on 8 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A High Level Synthesis Flow Using Model Driven
Engineering

Sébastien Le Beux, Laurent Moss, Philippe Marquet, Jean-Luc Dekeyser

To cite this version:
Sébastien Le Beux, Laurent Moss, Philippe Marquet, Jean-Luc Dekeyser. A High Level Synthesis Flow
Using Model Driven Engineering. Gogniat, G.; Milojevic, D.; Morawiec, A.; Erdogan, A. Algorithm-
Architecture Matching for Signal and Image Processing, 73, Springer, pp.253-274, 2010, Lecture Notes
in Electrical Engineering, 978-90-481-9964-8. �inria-00524821�

https://hal.inria.fr/inria-00524821
https://hal.archives-ouvertes.fr

A High Level Synthesis Flow Using
Model Driven Engineering

Sébastien Le Beux1∗, Laurent Moss1, Philippe Marquet2 and Jean-Luc
Dekeyser2

1Ecole Polytechnique de Montrál
2900 boulevard Edouard-Montpetit
Campus de l’Université de Montrál
2500, chemin de Polytechnique
Montrál, Quebec H3T 1J4, Canada
{Sebastien.Le-Beux, Laurent.Moss}@polymtl.ca

2LIFL and INRIA Lille Nord-Europe
Parc Scientifique de la Haute Borne
Park Plaza - Bât A - 40 avenue Halley
59650 Villeneuve d’Ascq, France
{Philippe.Marquet, Jean-Luc.Dekeyser}@lifl.fr

∗contact author: Sebastien.Le-Beux@polymtl.ca

Key words: High Level Synthesis, hardware accelerators, Model Driven En-
gineering, intensive signal processing.

1 Introduction

Intensive Signal Processing (ISP) applications handle large amounts of data
and are characterized by hierarchical and data parallel tasks, which manip-
ulate multidimensional data arrays according to complex data dependencies.
Performance requirements often preclude ISP applications from being im-
plemented purely in software and instead call for using custom and efficient
hardware accelerators. A hardware accelerator is an electronic design dedi-
cated to the execution of a specific application. Its hardware architecture can
be designed for a maximal parallelization of the algorithm needed to execute
its application and for optimal execution support for regular and repetitive
tasks. However, the complexity of hardware accelerators makes them difficult
to manipulate at low abstraction levels (in a Hardware Description Language
(HDL) for instance). The description of complex ISP applications is also error
prone and tedious when using tools that constrain the number of dimensions
of data arrays.

1

2 Authors Suppressed Due to Excessive Length

High Level Synthesis (HLS) seeks to simplify the design of hardware accel-
erators by describing applications at a high abstraction level and by generat-
ing the corresponding low level implementation. Application specification is
easier at a high abstraction level since hardware designers do not need to han-
dle all low level implementation details. HLS thus aims to achieve algorithm-
architecture matching by construction, through the automated synthesis of
a hardware architecture for an application specified at a high level. The
automatic generation of low level implementations drastically reduces non-
recurring engineering costs and the time to market compared to hand-tuned
implementations in HDL. For these reasons, HLS tools have been increasingly
successful among the hardware designer community. This trend is followed
by the continual integration of new capabilities and functionality in the tools.
Therefore, successful HLS has to support rapidly evolving technologies and
be maintainable in order to capitalize on efforts. We present some design
challenges faced by HLS and how model-driven engineering can meet them.

1.1 Design Challenges

This section presents some critical design challenges faced by both HLS tool
users (i.e. hardware designers) and HLS tool designers.

1.1.1 HLS Tool User

From the tool user’s point of view, the specification’s abstraction level is
sometimes not high enough to be really independent of low level implemen-
tation considerations: each particular implementation of a same application
requires a particular specification. Such specifications are generally done in C
or C-like syntax (e.g. Handel-C or SystemC) [15, 16, 30]. Unfortunately, such
textual low level descriptions do not provide the opportunity to immediately
extract specific information such as data dependencies, data parallelism and
hierarchy. Conversely, a graphical representation associated to a factorized
expression of the potential data parallelism and a powerful expression of data
dependencies can solve the difficulties faced by HLS tool users. Moreover, a
standard representation will considerably enhance discussions between the
different field experts who take part in the specification of an application.

1.1.2 HLS Tool Designer

The gap between high abstraction levels and low abstraction levels is often
bridged with one or several Internal Representations (IR) [15, 16, 19] in HLS
tools. The set of concepts associated to an IR is generally difficult to handle

A High Level Synthesis Flow Using Model Driven Engineering 3

due to the lack of formal definition of these concepts and of the relations
between them. Therefore, IR extension and maintenance (necessary for the
development and evolution of the tool) rely on new specifications of the IR
itself. Conversely, with a formal definition, extensions and maintenance are
supported by the addition of new concepts and new relations. This ensures
a high extensibility and maintainability of the IR, and consequently of the
tool itself. Furthermore, the clear identification of concepts and relations in
an IR allows a compilation process based on concept to concept translations
to take care of the relations between these concepts. The consequences of the
introduction of new concepts or relations in the source or target IR are then
localized in the compilation (i.e. translation) process.

At the level of the design flow, a clear separation of the compilation phases
implies a clear identification of the concepts, which helps to capitalize on the
tool designer’s efforts. Such tool development requires a strong methodology
well-suited to designer habits and a stable and advanced technology to ensure
the reuse, extension and maintainability of designer developments.

1.2 Proposed HLS Flow

This chapter presents a HLS flow dedicated to massively parallel ISP appli-
cations. The input is a graphical UML model of such an application. This
model is at a high abstraction level: it is independent from any implementa-
tion technology. The output is an hardware accelerator able to execute the
corresponding application. The generation of an hardware accelerator from
the input model is handled by three successive transformations. The first
transformation generates an internal representation of ISP applications and
keeps only useful concepts necessary to represent them. The second trans-
formation refines ISP models into RTL models; a RTL model represents an
hardware accelerator able to execute the corresponding ISP application. The
last transformation ensures the generation of the VHDL code correspond-
ing to the hardware accelerator. Usual Electronic Design Automation (EDA)
tools are then used to synthesize the resulting VHDL code to either a FPGA
or an ASIC.

Our flow is entirely built with the Model Driven Engineering (MDE)
methodology [32]: abstraction levels are defined in metamodels and refine-
ments are done by model transformations. By allowing a clear specification
of concepts and relations between concepts, MDE helps to reduce designer
difficulties in developing and maintaining HLS tools. MDE also eases exten-
sions of the proposed HLS flow:

• A fine grain extension extends the purpose of the HLS flow, for instance to
manage control flow applications. This is successfully accomplished with
the addition of new concepts in the metamodels and new rules in model
transformations.

4 Authors Suppressed Due to Excessive Length

Fig. 1 The proposed HLS flow for ISP applications.

• A coarse grain extension consists of a modification of the design flow itself
for new purposes. For instance, a model transformation could be added to
generate Verilog [34] code from the RTL metamodel or to create a RTL
model from another metamodel (a metamodel used in another tool for
instance).

By successfully meeting the design challenges enumerated above, our HLS
flow suitably solves the major difficulties encountered by both tool users and
designers.

This chapter is organized as follow. Related works are presented in Sec-
tion 2. Section 3 introduces MDE. We present our flow in Sections 4 and 5.
Experimental results are presented in Section 6. The last section concludes
this work.

A High Level Synthesis Flow Using Model Driven Engineering 5

2 Related works

During the last few years, the trend in HLS research [12, 15, 30, 16] and in
commercial state-of-the-art HLS tools [8, 7] has been to generate HDL code
from C/C++ or C-like languages such as Handel-C or SystemC. Using C code
to generate hardware designs allows working with a well known language and
at a higher abstraction level than RTL. However, since C is a sequential im-
perative language and neither a HDL nor a parallel programming language, C
by itself is not well-suited to describing hierarchical applications that manage
both task and data parallelism. Users of such a tool must strictly adhere to
its coding guidelines both to make sure that their C-based input falls within
the tool’s synthesizable subset and to allow the tool to infer hierarchy and
parallelism from the sequential code. System-level design languages such as
SystemC help in specifying basic connections between the RTL blocks gener-
ated by HLS, but face the same challenge than C when it comes to actually
performing HLS for each of these blocks. These works are compared to our
flow in the following paragraph.

HLS tools usually infer data parallelism from loops with bounded indexes.
However, the extraction of data dependencies across loop indexes from user-
provided code is both tedious and error-prone: its complexity dramatically
increases with the number of dimensions and the shape of the pattern. In
our flow, the expression of data dependencies relies on tilers [5]. Tilers do
not share these drawbacks since data dependencies are expressed explicitly
and independently of each other through a matrix-vector expression. Each
tiler has Origin, Paving and Fitting attributes which express how a data pattern
is built from an array. The origin vector specifies the origin of the reference
pattern in the array. The paving and fitting matrices respectively specify how
an array is covered by patterns and how the patterns are constructed with
array elements. A formal description of tilers is given in [5].

Some other approaches aim to specify application with code that follows
the polyhedral model. This implies stricter user code restrictions than con-
ventional HLS tools while offering more opportunities for optimizations in the
IR using existing libraries [14, 3, 11]. Such approaches share the drawbacks
previously identified for conventional HLS tools.

Another high level text-based approach would be for the user to specify
the application as a mathematical formula. In [21], linear signal transforms
are formally specified in the SPIRAL language [26] as products of structured
sparse matrices and several RTL implementations, with different degrees of
parallel execution, can be generated for a given user-provided transform.
This formalism is well-suited to transforms which can be defined recursively,
such as a Discrete Fourier Transform (DFT). However, this formalism is not
well-suited to specifying a complete ISP application which involves several
different transforms with complex data dependencies. A graphical formalism
such as UML is better suited to representing the hierarchy, data dependencies
and task parallelism of such an application. Furthermore, the use of MDE in

6 Authors Suppressed Due to Excessive Length

our flow allows greater opportunities for extensions by tool designers while
the input language of [21] is narrowly domain-specific. Tools based on the
polyhedral model or mathematical formulas could also be used to generate
elementary components to be integrated in our flow, so these works are com-
plementary to ours.

MDE has been increasingly adopted in the design of embedded systems in
general [31]. The basic modeling formalism is the general purpose language
UML, which offers attractive graphical representations. Because of its gen-
erality, UML is refined by the notion of profile to address domain-specific
problems. There are currently several profiles for the design of embedded
systems such as SysML [25], UML SPT [24], UML-RT [33], TUT Profile [17],
ACCOR/UML [18] and Embedded UML [20]. Because all these profiles may
potentially overlap, significant standardization efforts have been recently un-
dertaken by the OMG, resulting in the single unified and effective MARTE
standard profile [23], on which our HLS flow relies. MARTE stands for Mod-
eling and Analysis of Real-Time Embedded systems. Among other things,
MARTE provides mechanisms to express in a factorized way the potential
parallelism available in applications. MARTE is thus well suited to the de-
sign of intensive signal processing applications and is used to model input
applications in our HLS flow.

While these profiles allow one to specify a system with high level models,
refinements from such models towards low level models have to be achieved.
Some proposals use specific notations, defining a fully executable model se-
mantics [22, 1, 28]. Such expressive notations allow one to define models with
sufficient information so that the specified system can be completely gen-
erated. However, code is directly generated from the specifications, without
any intermediary representation. The same is observed in previous works on
VHDL code generation from UML [9, 4, 29, 35], where code is obtained di-
rectly by mapping UML concepts on VHDL syntax. These tools focus on finite
state machines, so they do not address ISP applications. Furthermore, the
absence of successive refinements leads to a lack of flexibility when targeting
new abstraction levels or new languages. While these approaches rely on an
abstraction of the system by using high level models, they only exploit a little
of its benefits by being directly dependent on target languages or abstraction
levels. Compared to these works, the high level synthesis flow we propose con-
siders intermediate abstraction levels. This allows a smooth refinement from
high abstraction level descriptions to low level implementations. This eases
extensions of the flow (e.g. to target dynamically reconfigurable architectures
[27] or to generate Verilog).

A High Level Synthesis Flow Using Model Driven Engineering 7

3 Model Driven Engineering

Complex systems can be easily understood via abstract and simplified repre-
sentations: models. A model highlights the intent of a system without describ-
ing the implementation details. Several methodologies sought to manipulate
models in the past decades, starting with Chen [6], and MDE [32] is one of
these methodologies. It has been oriented towards the modeling of software
engineering systems. Since the resulting models must be comprehensive and
machine-readable, MDE also covers code generation. In this way, MDE stands
apart from other model-based methodologies. This section details the major
aspects of MDE that are models, metamodels and model transformations.
General mechanisms are introduced and their relevance to ISP applications
is highlighted and discussed.

3.1 Model and Metamodel

A model is an abstraction of reality. Models can be graphically observed from
different points of view in order to highlight specific aspects of a given reality.
Models focusing on aspects such as data parallelism and task parallelism can
represent ISP applications well. A metamodel gathers the set of concepts and
relations between the concepts used to describe a model according to a par-
ticular purpose (e.g. according to a given abstraction level). A model is then
said to conform to a metamodel. Generally speaking, a metamodel defines
the syntax of its models, like a grammar defines its language. A metamodel
dedicated to the modeling of ISP applications at a given abstraction level thus
gathers the corresponding set of concepts and relations. Such metamodel is
assimilated to an IR in the HLS tool.

3.2 Model Transformations

A model transformation [10] is a compilation process which transforms a
source model into a target model, as illustrated in Figure 2. The source and
target models respectively conform to the source and target metamodels. A
model transformation relies on a set of small rules. According to such a de-
composition, particular and specific attention can be provided to the concepts
or set of concepts handled by a given rule. For instance, data parallelism and
task parallelism can be transformed with the specific attention they require.

Figure 3 illustrates a graphical representation of a simple rule used to
transform components at a high abstraction level (c:Component) into compo-
nents at a lower abstraction level (tc:Component. Each rule is divided into three
parts: the rule input pattern, the signature and the rule output pattern.

8 Authors Suppressed Due to Excessive Length

Fig. 2 A model transformation.

• The rule compares the input pattern to the source model in order to detect
a concept or a set of concepts which trigger an execution. Such a condition
is illustrated on the top part of the figure. In this example, the rule input
pattern is very simple and contains the single concept c:Component.

• The signature of a rule is represented in the center of the graphical rep-
resentation, it corresponds to the Component2Component concept. The signa-
ture allows the identification of the rule input and output patterns by the
source and destination relations. During the transformation’s execution, the
signature identifies the set of concepts matching the rule input pattern,
stores the information associated to these concepts and potentially calls
other transformation rules (so called sub-rules).

• The rule output pattern, illustrated on the bottom part of the figure,
corresponds to a set of concepts in the target model that are created during
a rule execution. In the example, it includes four concepts. tc:Component

is the main one since it is directly linked to the signature. Such a rule
allows adding information during the transformation. For instance, clock
and reset ports are attached to the transformed components (concepts
clock:InputPort and reset:InputPort.

Model transformations are well-suited to performing refinements from high
abstraction level specifications to code generation. For this purpose, model
transformations add implementation details all along the compilation process.
The code generation is a model to text transformation. Unlike model to model

A High Level Synthesis Flow Using Model Driven Engineering 9

Component2Component

+Component2Component(c, tc)

tc:Component

−name String = name_c

logic:DataType

−name String = "std_logic"

c:Component

−name String = name_c

clock:InputPort

−name String = "Clock"

reset:InputPort

−name String = "Reset"

+Source

+Destination

+type

+reset+clock

+type

Fig. 3 Graphical representation of a transformation rule.

transformations, they are made of templates. However, the transformation
principle remains the same.

4 High Level Specification Models

This section presents the high level models used in our design flow.

4.1 UML Model

Applications are modeled in UML, which is an OMG standard commonly
used by the MDE community. We use the MARTE profile (i.e. extension)
and its mechanisms to represent data parallelism, task parallelism and data
dependencies. The concepts present in such UML models include high-level
components with their inputs and outputs and how these components are in-
stantiated, assembled and connected together to model the application. These
concepts are illustrated here through the modeling of a matrix multiplication
example.

Figure 4 represents the UML model of a matrix multiplication example
which multiplies matrix MA and MB in order to produce a matrix MC. Ma-

10 Authors Suppressed Due to Excessive Length

Fig. 4 UML model of the matrix multiplication example.

Fig. 5 The data dependencies expressed by the tilers of the MatrixMultiplication task.

trixMultiplication is a hierarchical task. The data consumed and produced by
this task are respectively represented by the input ports MA and MB and
the output port MC. In this example, each port corresponds to a matrix and
the dimensions of each port are those of the corresponding matrix: 5×3 for
MA, 2×5 for MB and 2×3 for MC. In such UML models, input and output
data are represented as multidimensional arrays. There are no restrictions on
the number of dimensions of data arrays. This allows the modeling of mul-
tidimensional data manipulations typical of ISP applications. For instance,
video processing applications handle data over two spatial and one temporal

A High Level Synthesis Flow Using Model Driven Engineering 11

dimensions, whereas sonar chains process data over spatial, temporal and
frequency dimensions.

The multiplicity {2,3} of the component instance sp of task ScalarProduct

indicates that it is a data parallel task. In this example, the ScalarProduct task
is repeated 2×3 times. Each iteration in the repetition space consumes input
data patterns and produces output data patterns. Tiler connectors model
the data dependencies used to generate these patterns. Each tiler models
data dependencies linking a M -dimension data array to a N -dimension pat-
tern. These data dependencies are not limited to compact and axis-aligned
patterns.

Figure 5 represents the data dependencies expressed by the tilers used in
the matrix multiplication example. The left-hand side of Figure 5 represents
the tiler that links MA with Line, the center corresponds to the second input
tiler and the right-hand side illustrates the output tiler. This figure represents
the data consumed and produced in the data arrays (i.e. MA, MB and MC).
For instance, in the first iteration on the repetition space r = (0

0), the first
line of data array MA and the first column of MB are read1. This line and
column are used in the first iteration of task sp to produce the first data (i.e.
the data at (0, 0)) in output data array MC). In iteration r = (1

0), the first
line of MA is read again while the second column of MB is used2. The data
at position (1, 0) in MC is computed and so on and so forth: by iterating over
the whole repetition space, the whole output data array MC is produced.

The task sp consumes two input patterns (Line and Column) and produces
the output pattern Scalar which corresponds to the result of a scalar product
of a line and a column. ScalarProduct is an elementary task, i.e. a leaf in the
application model. Its behavior is provided by the deployment part of the
UML model [2] which links each elementary component to a given IP available
in a library. Hence, the application model remains independent from the
implementation target.

4.2 ISP Model and UML2ISP

Generally speaking, the ISP metamodel includes the interesting subset of
MARTE dedicated to the description of ISP applications. Additional fea-
tures allow to modify the hierarchy and to set the data parallelism execution

partitioning. The hierarchy in ISP models can be modified through the loop
transformations proposed in [13]. These loop transformations can modify,
create or delete the hierarchy and move the data parallelism inside this hier-
archy. Since the result of a loop transformation is an ISP model, successive
loop transformations can be applied. The ISP metamodel allows specifying

1 The line and the column are constructed through the fitting field.
2 The shift of the line and the column are constructed by the paving.

12 Authors Suppressed Due to Excessive Length

a data parallel execution for each hierarchical task. Thus, part of the data
parallelism can be executed sequentially while the other part is executed in
parallel. To satisfy constraints of the RTL metamodel (which will be further
detailed in Section 5), the following rules must be respected: the top level
tasks are sequentially executed, and the lowest ones are executed in parallel.
The set of specified executions defines the data-parallelism partitioning.

Specifying parallel or sequential execution for a set of hierarchical tasks is
similar to the operations of allocation, scheduling and binding performed by
conventional HLS tools [7]. Thus, specifying a given data parallel execution
means allocating a given set of computing units, scheduling tasks to given
clock cycles and binding tasks to the allocated computing units. However,
conventional HLS tools typically allocate only simple fine-grained compo-
nents, such as adders and multiplexers, contained in a fixed RTL library.
On the other hand, the computing units allocated by our HLS flow can be
pre-defined library components, user-defined components, or a hierarchical
composition thereof, and our flow can thus allocate computing units covering
a large spectrum of complexity and granularity.

UML2ISP ensures the transformation of an UML model into an initial
ISP model. The hierarchy of the resulting ISP model matches the hierarchy
defined in the UML model.

5 Implementation at a Low Level

5.1 RTL Model

The RTL metamodel gathers the set of concepts used to describe hardware
accelerators at the RTL level. Such hardware accelerators can execute the
targeted ISP applications according to a specific execution model3. This ex-
ecution model is data flow oriented and handles, among others, hierarchy,
multidimensional data dependencies, data parallelism and task parallelism.
The following provides an overview of the RTL metamodel.

In order to model hierarchical and well structured hardware accelerators,
the RTL metamodel relies on a component based approach. Communications
between components go through interfaces, which are composed of ports.
There are input and output ports: a component can receive or send data.
The shape and type of each port can also be specified. The RTL metamodel
gathers the set of concepts used to implement parallel and sequential execu-
tion. These concepts are illustrated with the matrix multiplication example.

3 The word model is different from the term model used in MDE. In order to avoid any
confusion, the term execution model is used when dealing with the way an application is
executed.

A High Level Synthesis Flow Using Model Driven Engineering 13

The repetition space around the ScalarProduct task is {2,3}. This task can be
executed in parallel or sequentially :

• With a parallel execution, this task is instantiated 2×3 times, as illustrated
in Figure 6(a). The six filled boxes represent the instances. Each instance
computes a separate given line-column scalar product through connections
to the customized data paths.

• With a sequential execution, ScalarProduct is instantiated only once, as il-
lustrated in Figure 6(b). The overall computation is coordinated by a
controller (represented with a lozenge) using multiplexers and demulti-
plexers (latches are also used in order to store data, they are not drawn
on the figure in order to keep it readable). The controller iterates over the
repetition space and, by controlling the multiplexers, sends the right data
(i.e. the right line and the right column for this example) to the single
computing unit. Conversely, the demultiplexers send the right data to the
output tiler. A constraint we have is that the most top level task has to
be sequentially executed.

reset

MA [5,3]

clock

MC [2,3]

MatrixMultiplication

MB [2,5]

TA

TB

TC

(a) Parallel execution.

reset

MA [5,3]

clock

MC [2,3]

MatrixMultiplication

MB [2,5]

TA

TB

TC

(b) Sequential execution.

Fig. 6 Hardware execution of the data parallelism in RTL models.

The mixed parallel/sequential execution relies on a combined use of these
concepts. Thus, the hierarchy of the accelerator can be modified and the data

14 Authors Suppressed Due to Excessive Length

parallelism moved through this hierarchy. The data parallelism included in
each hierarchical component is then executed independently from each other.

Data dependencies are implemented through data paths that are composed
of connectors, buffers, latches, multiplexers and demultiplexers. These data
paths can implement simple data array dependencies used in task parallelism
as well as complex multidimensional data array dependencies used in data
parallelism.

5.2 ISP2RTL Transformation

ISP models are independent from any implementation technology. Their au-
tomated implementation in either FPGA or ASIC technologies thus requires
very specific refinements assumed by the ISP2RTL transformation. ISP2RTL
is composed of rules. While some rules are very simple (such as the so-called
one-to-one rules), some others are more tedious. For instance, the creation of
a customized data path starting from a pure expression of data dependencies
relies on a quite complex set of rules. In this set of rules, Tiler2InputTiler gener-
ates the data path and Tiler2InputTilerInstance interconnects the resulting data
path into the component. The execution of Tiler2InputTilerInstance is triggered
each time a part of ISP model matches the rule input pattern, as illustrated
in Figure 7(a). This rule input pattern identifies the source and target of the
tiler’s connectors, the shape of the source port, the repetition space of the
repeated task, etc. When Tiler2InputTilerInstance is triggered, the Tiler2InputTiler

blackbox rule is automatically triggered; it analyzes the tiler’s attributes (i.e.
Origin, Paving and Fitting) in order to generate the right data path. For this
purpose, Tiler2InputTiler computes, for each data in the pattern and for each
iteration in the repetition space, the data read in the input array. Basically,
the computation is done in two successive steps:

• based on the iteration in the repetition space, the origin coordinates in the
input array are computed;

• based on the data in the input pattern and the origin coordinates, the
coordinates of the data read in the input array are computed.

As a result, we obtain a set of one-to-one links between the input pattern
and the input array. From these links, wires and buffers are allocated.

Figure 7(b) represents the execution of these rules onto an ISP model. Two
inputs tilers, highlighted through the dashed shapes, match the Tiler2InputTiler-

Instance rule input pattern4. This rule is thus triggered twice and Tiler2InputTiler

is subsequently triggered, resulting in TA and TB. Due to the simplicity of the
example, the generated data paths (not detailed in the figure) only include
wires.

4 the figure represents the UML model, which is very close to the ISP one.

A High Level Synthesis Flow Using Model Driven Engineering 15

(a) Graphical representation of the rule.

Tiler2InputTilerInstance

+Tiler2InputTilerInstance(t, rtl_ci)

rtl_top:OutputPort

−name = "OutputTilerIN"+unique()

rtl_it:InputTiler

−name String = "TilerIN"+unique()

rtl_sc:Connector

−name = "Connector1"+random()

rtl_tc:Connector

−name = "Connector2"+random()

rtl_tip:InputPort

−name = "InputTilerIN"+unique()

rtl_ci:ComponentInstance

rtl_pinst:PortInstance

rtl_pi1:PortInstance

−name = "pi1"

rtl_ip_rep:InputPort

rtl_pi2:PortInstance

−name = "pi2"

rtl_top_dt:DataTypertl_tip_dt:DataType

ci:ComponentInstance

t:Tiler

rtl_top_sh:Shape
rtl_tip_sh:Shape

rtl_sh3:Shape

rtl_sh1:Shape

rtl_sh4:Shape

rtl_sh2:Shape

pinst:PortInstance

ip_inst:InputPort

ip_rep:InputPort

dt2:DataType

dt1:DataType

sh2:Shape

sh1:Shape

sh3:Shape

action
Tiler2InputTiler(t,rtl_ci)

+hwComponent

+isp

+ref +ref

+source=s +target=t

+portInstance+portInstance

+dim=s1

+target=t

+owner

+dim=s1

+target

+dim=s3+s2

+source=s

+ports

+source

+ports

+repetitionSpace=s2

+rtl

+dim=s3+s2

+type=t2

+type=t2+type=t1

+type=t2

+patternShape=s3

−type=t1

+dim=s2 +dim=s3

+type=t1 +port+dim=s1

(b) Execution of the rule.

Fig. 7 The Tiler2InputTilerInstance rule transforms the tilers into customized data paths.

5.3 RTL2VHDL Transformation

The RTL metamodel is independent from any HDL syntax, but is low level
enough to allow code generation through the RTL2VHDL transformation.
VHDL code generation from the RTL metamodel is performed through tem-
plates that navigate the RTL model to find their associated concepts and
print them in a VHDL syntax. Figure 8 a) presents the template associated
to the Component concept in the RTL metamodel. Figure 8 b) shows excerpts
of the generated code for the MatrixMultiplication component. Special attention
was given to keep multidimensional data arrays and data parallelism factor-
ized. The generated code can be directly synthesized (e.g. on FPGA) with
standard logic synthesis tools.

6 Case Study

This section illustrates the correctness and efficiency of our flow dedicated
to intensive signal processing applications. For this purpose, a correlation

16 Authors Suppressed Due to Excessive Length

(a) Textual representation of a rule.

ENTITY <%=element.getName()%> IS
PORT (
<%=ts.generate(element.getClock())%>;
<%=ts.generate(element.getReset())%>
<%for (Port p : (List<Port>) element.getPorts())
{%>;

<%=ts.generate(p)%><%
}%>);
END <%=element.getName()%>;

(b) Resulting VHDL code for the example.

ENTITY Matr ixMul t ip l i c a t i on IS

PORT (
c l o ck : IN Std Logic ;
r e s e t : IN Std Logic ;
MA : IN Type 5 3 Intege r ;
MB : IN Type 2 5 Intege r ;
MC : OUT Type 2 3 Intege r) ;
END Matr ixMul t ip l i c a t i on ;

Fig. 8 A rule transforming RTL components into VHDL entities.

algorithm is studied. This algorithm is well known and frequently used in
intensive signal processing. Eq. 1 gives its mathematical formulation, which
is composed of a set of multiplications and additions that can be executed in
parallel.

Ccy(j) =

1023∑

i=0

c(i) · y(i + j) (1)

6.1 UML Model

The correlation algorithm application has been modeled in UML and indepen-
dently from any implementation. All the data parallelism and task parallelism
are extracted so that they can be used to generate an efficient implementa-
tion. In the following, representative parts of the UML are presented.

Figure 9(a) illustrates component AdditionTree that realizes the sum in
the correlation algorithm. The input port inAdditionTree is composed of 1024
data (i.e. the data to sum) and the output port is a scalar value (i.e. the result
of the sum). The 10 component instances represent the 10 pipeline stages of
the tree topology used to realize the sum and the data flow is represented
by the dashed arrow. Figure 9(b) represents the data parallel task AddStep8,
which is the 8th component instantiated in the pipeline stage. Its input port
inA8 and its output port outA8 are respectively composed of 8 data and 4
data. The elementary task a8 is repeated 4 times to realize the necessary
computation.

6.2 Generated Hardware Accelerator

From the UML model presented above, our flow automatically generates a
hardware accelerator able to execute the correlation algorithm. For this pur-

A High Level Synthesis Flow Using Model Driven Engineering 17

(a) additions at task parallelism level (data flow represented by dashed arrow).

(b) multiplications at the data parallelism level.

Fig. 9 UML model of the correlation algorithm.

pose, an ISP model, a RTL model and a VHDL code are successively gener-
ated, as illustrated in Figure 10.

The resulting VHDL code was synthesized for an Altera Stratix 2S60
FPGA using the Quartus tool from Altera. Figure 11(a) illustrates the 6
last stages of the tree topology and the corresponding reduction of data ar-
rays from a pipeline stage to another. Figure 11(b) represents the synthesis
results for the 8th pipeline stage. In the figure, marks 1 and 5 correspond
to the input and the output ports, marks 2x and 4 point out the generated
components that resolve data dependencies initially expressed with tilers.
Finally, marks 3x represent the four elementary tasks that realize parallel
execution of additions. By expressing the data dependencies through tilers
in UML, our flow finds that data dependencies are efficiently implemented in
hardware with shift register, as illustrated in Figure 11(c).

The relevance of the HLS flow is evaluated through a comparison between
a manually implemented hardware accelerator and an automatically gener-
ated one. Synthesis results are summarized in Table 1. As a first result, the
latency of both accelerators remains strictly the same. The maximum fre-
quency of the automatically generated hardware accelerator is 1.9% higher
compared to the manually implemented one. The number of resources re-
quired to implement the accelerators are also close to each other since only

18 Authors Suppressed Due to Excessive Length

Fig. 10 Generating VHDL code from UML model.

10.7% additionnal resources are necessary for the automatically generated
hardware accelerator. Whereas manually implementing the hardware accel-
erator takes weeks, modeling the UML model of the application only takes a
few hours. Hence, development time can be greatly shortened with the HLS
flow at the price of using additional hardware resources.

Table 1 Synthesis results of the manually and automatically generated hardware accel-
erators.

Version Max frequency Latency Used resources Development time

(in MHz) (cycles) (ALUTs)

Manual 213 11 17006 weeks

Automated 217 11 18834 hours

7 Conclusion

This chapter advocates the use of the MDE methodology for high level syn-
thesis. In order to demonstrate the benefits of MDE, we developed a model-

A High Level Synthesis Flow Using Model Driven Engineering 19

(a) synthesized addition tree.

3a

3b

3c

3d

2a

2b

4

1 5

Input ports
Input Tilers
Repeated tasks
Ouput Tiler
Output Ports

3x:
2x:

4:
5:

1:

(b) synthesized data parallel task.

(c) data dependencies synthesized as shift register.

Fig. 11 Synthesis results of the generated hardware accelerator.

20 Authors Suppressed Due to Excessive Length

based HLS flow. This flow relies on a precise definition of features, such
as data parallelism and data dependencies, that are important for intensive
signal processing applications. We have also shown that MDE provides key
benefits to both users and designers of our HLS flow: users work in a stan-
dardized unified graphical environment and designers can easily extend and
maintain the flow.

From applications modeled at a high abstraction level in UML, the flow
automatically performs successive refinements and generates the correspond-
ing VHDL code. Such refinements rely on a clear identification of concepts in
the different abstraction levels and on a suitable decomposition of the model
transformations into rules. We have validated the relevance of our HLS flow
for correlation algorithms. The quality of results achieved by our HLS flow
is almost as good (same latency with 10.7% more hardware resources) than
that achieved with hand-coded VHDL. The flexibility and productivity ad-
vantages of high-level specifications and automated refinements more than
outweigh the small degradation in the quality of results. Also, the perfor-
mance of such an application-specific hardware accelerator is generally much
higher than that achieved by software running on a (non-application-specific)
processor.

MDE could also enable extensions to the flow to target other types of
applications, other implementation languages or other abstraction levels.

References

1. Marcus Alanen, Johan Lilius, Ivan Porres, Dragos Truscan, Ian Oliver, and Kim Sand-
strom. Design method support for domain specific soc design. In Proceedings of

the Fourth Workshop on Model-Based Development of Computer-Based Systems and
Third International Workshop on Model-Based Methodologies for Pervasive and Em-
bedded Software (MBD-MOMPES’06), pages 25–32, 2006.

2. Rabie Ben Atitallah, Eric Piel, Smail Niar, Philippe Marquet, and Jean-Luc Dekeyser.

Multilevel MPSoC simulation using an MDE approach. In IEEE International SoC
Conference (SoCC 2007), Hsinchu, Taiwan, September 2007.

3. Cédric Bastoul. Code generation in the polyhedral model is easier than you think. In

PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16, Juan-les-Pins, France, September 2004.

4. Dag Björklund and Johan Lilius. From UML Behavioral Descriptions to Efficient
Synthesizable VHDL. In Proceedings of the 20th IEEE Norchip Conference, November

2002.
5. Pierre Boulet. Array-OL revisited, multidimensional intensive signal processing spec-

ification. Research Report RR-6113, INRIA, February 2007.

6. Peter Pin-Shan Chen. The entity-relationship model–toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976.

7. P. Coussy, D.D. Gajski, M. Meredith, and A. Takach. An introduction to high-level
synthesis. IEEE Design & Test of Computers, 26(4):8–17, 2009.

8. Philippe Coussy and Adam Morawiec, editors. High-Level Synthesis: From Algorithm
to Digital Circuit. Springer, New York, NY, 2008.

A High Level Synthesis Flow Using Model Driven Engineering 21

9. Frank P. Coyle and Mitchell A. Thornton. From UML to HDL: a model driven archi-
tectural approach to hardware-software co-design. Information Systems: New Gener-
ations Conference (ISNG), pages 88–93, April 2005.

10. Krzysztof Czarnecki and Simon Helsen. Classification of model tranformation ap-
proaches. In Proceeding of OOPSLA Workshop on Generative Techniques in the
Context of Model Driven Architecture, 2003.

11. Harald Devos, Kristof Beyls, Mark Christiaens, Jan Van Campenhout, and Dirk
Stroobandt. From loop transformation to hardware generation. In Proceedings of
the 17th ProRISC Workshop, pages 249–255, Veldhoven, November 2006.

12. Jan Frigo, Maya Gokhale, and Dominique Lavenier. Evaluation of the streams-C C-to-
FPGA compiler: an applications perspective. In Proceedings of the 2001 ACM/SIGDA
ninth international symposium on Field Programmable Gate Arrays (FPGA), pages

134–140, 2001.
13. Calin Glitia and Pierre Boulet. High level loop transformations for multidimensional

signal processing embedded applications. In International Symposium on Systems,
Architectures, MOdeling, and Simulation (SAMOS VIII), Samos, Greece, July 2008.

14. Anne-Claire Guillou, Patrice Quinton, and Tanguy Risset. Hardware synthesis for

multi-dimensional time. In IEEE 14th International Conference on Application-
specific Systems, Architectures and Processors (ASAP 03), pages 40–51, The Hague,
The Netherlands, June 2003.

15. Zhi Guo, Betul Buyukkurt, Walid Najjar, and Kees Vissers. Optimized Generation
of Data-Path from C Codes for FPGAs. In DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe, pages 112–117, Washington, DC, USA,

2005. IEEE Computer Society.
16. Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. SPARK: a high-level

synthesis framework for applying parallelizing compiler transformations. In Intl. Conf.

on VLSI Design, pages 461–466, 2003.
17. Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko Hännikäinen,

Timo D. Hämäläinen, Jouni Riihimäki, and Kimmo Kuusilinna. UML-based mul-
tiprocessor SoC design framework. Transactions in Embedded Computing Systems,
5(2):281–320, 2006.

18. P. Lanusse, S.Gérard, and F.Terrier. Real-time modeling with UML : The ACCORD
approach. In UML 98 : Beyond the notation, Mulhouse, France, 1998.

19. Jack Lo, Susan Eggers, Henry Levy, and Dean Tullsen. Compilation issues for a
simultaneous multithreading processor. In Proceedings of the First SUIF Compiler
Workshop, pages 146–147, January 1996.

20. G. Martin, L. Lavagno, and J. Louis-Guerin. Embedded UML: a merger of real-
time UML and co-design. In Proceedings of the 9th International Symposium on
Hardware/Software Codesign (CODES), pages 23–28, 2001.

21. P.A. Milder, F. Franchetti, J.C. Hoe, and M. Puschel. Formal datapath representation
and manipulation for implementing DSP transforms. In 2008 45th ACM/IEEE Design
Automation Conference, pages 385–90, Piscataway, NJ, USA, 2008.

22. Kathy Dang Nguyen, Zhenxin Sun, P. S. Thiagarajan, and Weng-Fai Wong. Model-
driven SoC design via executable UML to SystemC. In RTSS ’04: Proceedings of the
25th IEEE International Real-Time Systems Symposium (RTSS’04), pages 459–468,

Washington, DC, USA, 2004. IEEE Computer Society.
23. Object Management Group. A UML profile for MARTE, 2007. http://www.omgmarte.

org.
24. Object Management Group, Inc., editor. (UML) Profile for Schedulability, Perfor-

mance, and Time Version 1.1. http://www.omg.org/technology/documents/formal/

schedulability.htm, January 2005.
25. Object Management Group, Inc., editor. Final Adopted OMG SysML Specification.

http://www.omg.org/cgi-bin/doc?ptc/06-0504, May 2006.
26. Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,

Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang

22 Authors Suppressed Due to Excessive Length

Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

27. Imran Rafiq Quadri, Samy Meftali, and Jean-Luc Dekeyser. From MARTE to dynam-
ically reconfigurable FPGAs : Introduction of a control extension in a model based

design flow. Technical report, DART - INRIA Lille - Nord Europe - INRIA - CNRS :
UMR8022 - Université des Sciences et Technologies de Lille - Lille I, 2009.

28. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A model-driven design environ-
ment for embedded systems. In DAC ’06: Proceedings of the 43rd annual conference

on Design automation, pages 915–918, New York, NY, USA, 2006. ACM.
29. Medard Rieder, Rico Steiner, Cathy Berthouzoz, Francois Corthay, and Thomas Ster-

ren. Rapid Integration of Software Engineering Techniques, chapter Synthesized UML,

a Practical Approach to Map UML to VHDL. Springer Berlin / Heidelberg, 2007.
30. Robert Rinker, Margaret Carter, Amitkumar Patel, Monica Chawathe, Charlie Ross,

Jeffrey Hammes, Walid A. Najjar, and Wim Böhm. An automated process for com-
piling dataflow graphs into reconfigurable hardware. IEEE Trans. Very Large Scale

Integr. Syst., 9(1):130–139, 2001.
31. Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2):41–47, Febru-

ary 2006.

32. Ed Seidewitz. What models mean. IEEE Softw., 20(5):26–32, 2003.
33. Bran Selic. Using UML for Modeling Complex Real-Time Systems. In LCTES ’98:

Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 250–260, London, UK, 1998. Springer-Verlag.

34. Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic Publishers, fourth edition, May 1998.

35. Jorgiano Vidal, Florent de Lamotte, Guy Gogniat, Philippe Soulard, and Jean-Philippe
Diguet. A co-design approach for embedded system modeling and code generation

with UML and MARTE. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2009.

