149,739 research outputs found

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    SMEs: ERP or virtual collaboration teams

    Get PDF
    Small firms are indeed the engines of global economic growth. Small and Medium Enterprises (SMEs) play an important role to promote economic development. SMEs in the beginning of implementing new technologies always face capital shortage and need technological assistance. Available ERP systems do not fulfil the specific requirements of Small firms. SMEs has scarce resources and manpower therefore many SMEs don?t have the possessions to buy and operate an ERP System. On the other hand competition and competitiveness of SMEs have to be strengthened. This paper briefly reviews the existing perspectives on virtual teams and their effect on SMEs management. It also discusses the main characteristics of virtual teams and clarifies the differences aspects of virtual team application in SMEs. After outlining some of the main advantages and pitfall of such teams, it concentrates on comparing of ERP and virtual collaborative teams in SMEs. Finally, it provides evidence for the need of ?Software as a Service (SaaS)? where an application is hosted as a service provided to customers across the web for SMEs as an alternative of ERP. It has been widely argued that ERP disadvantage in SMEs such as administrative expenditure and cost, isolated structure, severe lack of software flexibility, insufficient support of SMEs business and high operating cost, lead SMEs to use virtual collaborative team which is net work base solution

    DIDET: Digital libraries for distributed, innovative design education and teamwork. Final project report

    Get PDF
    The central goal of the DIDET Project was to enhance student learning opportunities by enabling them to partake in global, team based design engineering projects, in which they directly experience different cultural contexts and access a variety of digital information sources via a range of appropriate technology. To achieve this overall project goal, the project delivered on the following objectives: 1. Teach engineering information retrieval, manipulation, and archiving skills to students studying on engineering degree programs. 2. Measure the use of those skills in design projects in all years of an undergraduate degree program. 3. Measure the learning performance in engineering design courses affected by the provision of access to information that would have been otherwise difficult to access. 4. Measure student learning performance in different cultural contexts that influence the use of alternative sources of information and varying forms of Information and Communications Technology. 5. Develop and provide workshops for staff development. 6. Use the measurement results to annually redesign course content and the digital libraries technology. The overall DIDET Project approach was to develop, implement, use and evaluate a testbed to improve the teaching and learning of students partaking in global team based design projects. The use of digital libraries and virtual design studios was used to fundamentally change the way design engineering is taught at the collaborating institutions. This was done by implementing a digital library at the partner institutions to improve learning in the field of Design Engineering and by developing a Global Team Design Project run as part of assessed classes at Strathclyde, Stanford and Olin. Evaluation was carried out on an ongoing basis and fed back into project development, both on the class teaching model and the LauLima system developed at Strathclyde to support teaching and learning. Major findings include the requirement to overcome technological, pedagogical and cultural issues for successful elearning implementations. A need for strong leadership has been identified, particularly to exploit the benefits of cross-discipline team working. One major project output still being developed is a DIDET Project Framework for Distributed Innovative Design, Education and Teamwork to encapsulate all project findings and outputs. The project achieved its goal of embedding major change to the teaching of Design Engineering and Strathclyde's new Global Design class has been both successful and popular with students

    New Hampshire University Research and Industry Plan: A Roadmap for Collaboration and Innovation

    Get PDF
    This University Research and Industry plan for New Hampshire is focused on accelerating innovation-led development in the state by partnering academia’s strengths with the state’s substantial base of existing and emerging advanced industries. These advanced industries are defined by their deep investment and connections to research and development and the high-quality jobs they generate across production, new product development and administrative positions involving skills in science, technology, engineering and math (STEM)
    • …
    corecore