8 research outputs found

    A New Approach for Modeling Piezoresistive Force Sensors Based on Semiconductive Polymer Composites

    Get PDF
    Semiconductive polymer composites are used in a wide range of sensors and measurement devices. This paper discusses the development of a model and a new theoretical formulation for predicting piezoresistive behavior in semiconductive polymer composites, including their creep behavior and contact resistance. The relationship between electrical resistance and force applied to the piezoresistive force sensor can be predicted by using the proposed theoretical formulation. In order to verify the proposed formulation, the piezoresistive behavior of Linqstat, a carbon-filled polyethylene, was modeled mathematically. In addition, some experimental tests, such as thermo gravitational analysis and SEM, have been performed on Linqstat to find the volume fraction and size of carbon particles, which are essential for modeling. In addition, on a fabricated force sensor using Linqstat, a force versus resistance curve was obtained experimentally, which verified the validity and reliability of the proposed formulation

    Microfabricated tactile sensors for biomedical applications: a review

    Get PDF
    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described

    Development of Piezoresistive Tactile Sensors and a Graphical Display System for Minimally Invasive Surgery and Robotics

    Get PDF
    Development of Piezoresistive Tactile Sensors and a Graphical Display System for Minimally Invasive Surgery and Robotics Masoud Kalantari, PhD Concordia University, 2013 This PhD work presents a new tactile and feedback systems for minimally invasive surgery (MIS)and robotics. The thesis is divided into two major sections: the tactile sensing system, and the graphical display system. In the tactile sensing system, piezoresistive materials are used as measuring elements. The first part of the thesis is focused on the theoretical modeling of piezoresistive sensing elements, which are semiconductive polymer composites. The model predicts the piezoresistive behavior in semiconductive polymer composites, including their creep effect and contact resistance. A single force sensing resistor (FSR) is, then, developed by using the semiconductive polymer composite materials. The developed FSR is used in the structure of a novel tactile sensor as the transduction element. The developed tactile sensor is designed to measure the difference in the hardness degree of soft tissues. This capability of the sensor helps surgeons to distinguish different types of tissues involved in the surgery. The tactile sensor is integrated on the extremity of a surgical tool to provide tactile feedback from the interaction between surgical instruments and the tissue during MIS. Mitral valve annuloplasty repair by MIS is of our particular interest to be considered as a potential target for the use of the developed tactile sensor. In the next step, the contact interaction of the tactile sensor with soft tissues is modelled, parametrically. Viscoelastic interaction is considered between the tactile sensor and atrial tissue in annuloplasty mitral valve repair; and a parametric solution for the viscoelastic contact is achieved. In addition to the developed sensor, a novel idea regarding measuring the indentation rate, in addition to measuring force and displacement is implemented in a new design of an array tactile sensor. It is shown that the indentation-rate measurement is an important factor in distinguishing the hardness degree of tissues with viscoelastic behaviour. The second part of the thesis is focused on the development of a three-dimensional graphical display that provides visual palpation display to any surgeon performing robotic assisted MIS. Two matrices of the developed piezoresistive force sensor are used to palpate the tissue and collect the tactile information. The collected data are processed with a new algorithm and graphically rendered in three dimensions. Consequently, the surgeon can determine the presence, location, and the size of any hidden superficial tumor/artery by grasping the target tissue in a quasi-dynamic way

    Design, Modeling, Fabrication and Testing of a Piezoresistive-Based Tactile Sensor for Minimally Invasive Surgery Applications

    Get PDF
    Minimally invasive surgery (MIS) has become a preferred method for surgeons for the last two decades, thanks to its crucial advantages over classical open surgeries. Although MIS has some advantages, it has a few drawbacks. Since MIS technology includes performing surgery through small incisions using long slender tools, one of the main drawbacks of MIS becomes the loss of direct contact with the patient’s body in the site of operation. Therefore, the surgeon loses the sense of touch during the operation which is one of the important tools for safe manipulation of tissue and also to determine the hardness of contact tissue in order to investigate its health condition. This Thesis presents a novel piezoresistive-based multifunctional tactile sensor that is able to measure the contact force and the relative hardness of the contact object or tissue at the same time. A prototype of the designed sensor has been simulated, analyzed, fabricated, and tested both numerically and experimentally. The experiments have been performed on hyperelastic materials, which are silicone rubber samples with different hardness values that resemble different biological tissues. The ability of the sensor to measure the contact force and relative hardness of the contact objects is tested with several experiments. A finite element (FE) model has been built in COMSOL Multiphysics (v3.4) environment to simulate both the mechanical behavior of the silicone rubber samples, and the interaction between the sensor and the silicone rubbers. Both numerical and experimental analysis proved the capability of the sensor to measure the applied force and distinguish among different silicone-rubber samples. The sensor has the potential for integration with commercially available endoscopic grasper

    Optical Microsystems for Static and Dynamic Tactile Sensing: Design, Modeling, Fabrication and Testing

    Get PDF
    Minimally invasive surgical operations encompass various surgical tasks ranging from conventional endoscopic/laparoscopic methods to recent sophisticated minimally invasive surgical techniques. In such sophisticated techniques, surgeons use equipment varying from robotic-assisted surgical platforms for abdominal surgery to computer-controlled catheters for catheter-based cardiovascular surgery. Presently, the countless advantages that minimally invasive surgery offers for both patients and surgeons have made the use of such surgical operations routine and reliable. However, in such operations, unlike conventional surgical operations, surgeons still suffer from the lack of tactile perception while interacting with the biological tissues using surgical instruments. To address this issue, it is necessary to develop a tactile sensor that can mimic the fingertip tactile perceptions of surgeons. In doing so and to satisfy the needs of surgeons, a number of considerations should be implemented in the design of the tactile sensors. First, the sensor should be magnetic resonance compatible to perform measurements even in the presence of magnetic resonance imaging (MRI) devices. Currently, such devices are in wide-spread use in surgical operation rooms. Second, the sensor should be electrically-passive because introducing electrical current into the patients’ body is not desirable in various surgical operations such as cardiovascular operations. Third, the sensor should perform measurements under both static and dynamic loading conditions during the sensor-tissue interactions. Such a capability of the sensor ensures that surgeons receive tactile feedback even when there is continuous static contact between surgical tools and tissues. Essentially, surgeons need such feedback to make surgical tasks safer. In addition, the size of the sensor should be miniaturized to address the size restrictions. In fact, the combination of intensity-based optical fiber sensing principles and micro-systems technology is one of the limited choices that address all the required considerations to develop such tactile sensors in a variety of ways. The present thesis deals with the design, modeling, manufacturing, testing, and characterizing of different tactile sensor configurations based on detection and integration methods. The various stages of design progress and principles are developed into different design configurations and presented in different chapters. The main sensing principle applied is based on the intensity modulation principle of optical fibers using micro-systems technology. In addition, a hybrid sensing principle is also studied by integrating both optical and non-optical detection methods. The micromachined sensors are categorized into five different generations. Each generation has advantages by comparison with its counterpart from the previous generation. The initial development of micromachined sensors is based on optical fiber coupling loss. In the second phase, a hybrid optical-piezoresistive sensing principle is studied. The success of these phases was instrumental in realizing a micromachined sensor that has the advantage of being fully optical. This sensor measures the magnitude of concentrated and distributed force, the position of a concentrated force, the variations in the force distribution along its length, the relative hardness of soft contact objects, and the local discontinuities in the hardness of the contact objects along the length of the contact area. Unlike most electrical-based commercially-available sensors, it performs all of these measurements under both static and dynamic loading conditions. Moreover, it is electrically passive and potentially MRI-compatible. The performances of the sensors were experimentally characterized for specific conditions presented in this thesis. However, these performances are easily tunable and adjustable depending upon the requirements of specific surgical tasks. Although the sensors were initially designed for surgical applications, they can have numerous other applications in the areas of robotics, automation, tele-display, and material testing
    corecore