3 research outputs found

    Design, Execution, and Postmortem Analysis of Prolonged Autonomous Robot Operations

    Get PDF
    In the context of space missions and terrestrial applications, both mission goals and task implementations for autonomous robots are becoming increasingly complex. Thus, the challenge of monitoring the achievement of task objectives and checking the correctness of their implementation is becoming more and more difficult. To tackle these problems, we propose an unified architecture that supports different stakeholders during the different phases of the deployment: 1) the design phase; 2) the runtime phase; 3) the post-mortem analysis phase. Furthermore, we implement this architecture by enhancing our task programming framework RAFCON with powerful logging, debugging and profiling capabilities. We demonstrate the efficiency of our approach in the context of the ROBEX mission, during which the DLR Lightweight Rover Unit autonomously deployed several seismometers in an unknown rough terrain on Mt. Etna, Sicily. The analysis results for a state machine consisting of more than 1500 states and more than 1900 transitions are presented. Finally, we give a comparison between our framework and related software tools

    Preliminary Results for the Multi-Robot, Multi-Partner, Multi-Mission, Planetary Exploration Analogue Campaign on Mount Etna

    Get PDF
    This paper was initially intended to report on the outcome of the twice postponed demonstration mission of the ARCHES project. Due to the global COVID pandemic, it has been postponed from 2020, then 2021, to 2022. Nevertheless, the development of our concepts and integration has progressed rapidly, and some of the preliminary results are worthwhile to share with the community to drive the dialog on robotics planetary exploration strategies. This paper includes an overview of the planned 4-week campaign, as well as the vision and relevance of the missiontowards the planned official space missions. Furthermore, the cooperative aspect of the robotic teams, the scientific motivation, the sub task achievements are summarised

    Design, Execution, and Postmortem Analysis of Prolonged Autonomous Robot Operations

    No full text
    In the context of space missions and terrestrial applications, both mission goals and task implementations for autonomous robots are becoming increasingly complex. Thus, the challenge of monitoring the achievement of task objectives and checking the correctness of their implementation is becoming more and more difficult. To tackle these problems, we propose an unified architecture that supports different stakeholders during the different phases of the deployment: 1) the design phase; 2) the runtime phase; 3) the post-mortem analysis phase. Furthermore, we implement this architecture by enhancing our task programming framework RAFCON with powerful logging, debugging and profiling capabilities. We demonstrate the efficiency of our approach in the context of the ROBEX mission, during which the DLR Lightweight Rover Unit autonomously deployed several seismometers in an unknown rough terrain on Mt. Etna, Sicily. The analysis results for a state machine consisting of more than 1500 states and more than 1900 transitions are presented. Finally, we give a comparison between our framework and related software tools
    corecore