182 research outputs found

    Desiderata for domain reference ontologies in biomedicine

    Get PDF
    AbstractDomain reference ontologies represent knowledge about a particular part of the world in a way that is independent from specific objectives, through a theory of the domain. An example of reference ontology in biomedical informatics is the Foundational Model of Anatomy (FMA), an ontology of anatomy that covers the entire range of macroscopic, microscopic, and subcellular anatomy. The purpose of this paper is to explore how two domain reference ontologies—the FMA and the Chemical Entities of Biological Interest (ChEBI) ontology, can be used (i) to align existing terminologies, (ii) to infer new knowledge in ontologies of more complex entities, and (iii) to manage and help reasoning about individual data. We analyze those kinds of usages of these two domain reference ontologies and suggest desiderata for reference ontologies in biomedicine. While a number of groups and communities have investigated general requirements for ontology design and desiderata for controlled medical vocabularies, we are focusing on application purposes. We suggest five desirable characteristics for reference ontologies: good lexical coverage, good coverage in terms of relations, compatibility with standards, modularity, and ability to represent variation in reality

    New desiderata for biomedical terminologies

    Get PDF
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and surveys some of the problems to which they give rise, all of which have to do with a failure to anchor the terms in terminologies to corresponding referents in reality. Part II outlines a new, realist solution to this anchorage problem, which sees terminology construction as being motivated by the goal of alignment not on concepts but on the universals (kinds, types) in reality and thereby also on the corresponding instances (individuals, tokens). We outline the realist approach, and show how on its basis we can provide a benchmark of correctness for terminologies which will at the same time allow a new type of integration of terminologies and electronic health records. We conclude by outlining ways in which the framework thus defined might be exploited for purposes of diagnostic decision-support

    Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain

    Get PDF
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We advance a proposal resting on a distinction of three levels too often run together in biomedical ontology research: 1. the level of reality; 2. the level of cognitive representations of this reality; 3. the level of textual and graphical artifacts. We propose a reference terminology for ontology research and development that is designed to serve as common hub into which the several competing disciplinary terminologies can be mapped. We then justify our terminological choices through a critical treatment of the ‘concept orientation’ in biomedical terminology research

    Towards the mental health ontology

    Get PDF
    Lots of research have been done within the mental health domain, but exact causes of mental illness are still unknown. Concerningly, the number of people being affected by mental conditions is rapidly increasing and it has been predicted that depression would be the world's leading cause of disabilityby 2020. Most mental health information is found in electronic form. Application of the cutting-edge information technologies within the mental health domain has the potential to greatly increase the value of the available information. Specifically, ontologies form the basis for collaboration between researchteams, for creation of semantic web services and intelligent multi-agent systems, for intelligent information retrieval, and for automatic data analysis such as data mining. In this paper, we present Mental Health Ontology which can be used to underpin a variety of automatic tasks and positively transform the way information is being managed and used within the mental health domain

    Functions in Basic Formal Ontology

    Get PDF
    The notion of function is indispensable to our understanding of distinctions such as that between being broken and being in working order (for artifacts) and between being diseased and being healthy (for organisms). A clear account of the ontology of functions and functioning is thus an important desideratum for any top-level ontology intended for application to domains such as engineering or medicine. The benefit of using top-level ontologies in applied ontology can only be realized when each of the categories identified and defined by a top-level ontology is integrated with the others in a coherent fashion. Basic Formal Ontology (BFO) has from the beginning included function as one of its categories, exploiting a version of the etiological account of function that is framed at a level of generality sufficient to accommodate both biological and artifactual functions. This account has been subjected to a series of criticisms and refinements. We here articulate BFO’s account of function, provide some reasons for favoring it over competing views, and defend it against objections

    The role of ontologies in biological and biomedical research: a functional perspective.

    Get PDF
    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/bib/bbv01

    Alternatives to Realist Consensus in Bio-Ontologies: Taxonomic Classification as a Basis for Data Discovery and Integration

    Get PDF
    Big data is opening new angles on old questions about scientific progress. Is scientific knowledge cumulative? If yes, how does it make progress? In the life sciences, what we call the Consensus Principle has dominated the design of data discovery and integration tools: the design of a formal classificatory system for expressing a body of data should be grounded in consensus. Based on current approaches in biomedicine and systematic biology, we formulate and compare three types of the Consensus Principle: realist, contextual-best, and coordinative. Contrasted with the realist program of the Open Biomedical Ontologies Foundry, we argue that historical practices in systematic biology provide an important and overlooked alternative based on coordinative consensus. Systematists have developed a robust system for referring to taxonomic entities that can deliver high quality data discovery and integration without invoking consensus about reality or “settled” science

    Advancing translational research with the Semantic Web

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen <it>Translational Research</it>, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature.</p> <p>Results</p> <p>We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine.</p> <p>Conclusion</p> <p>Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.</p
    corecore