379 research outputs found

    Loop Formulas for Description Logic Programs

    Full text link
    Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {\em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.Comment: 29 pages, 1 figures (in pdf), a short version appeared in ICLP'1

    Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

    Get PDF
    Logic programs with aggregates and description logic programs (dl-programs) are two recent extensions to logic programming. In this paper, we study the relationships between these two classes of logic programs, under the well-founded semantics. The main result is that, under a satisfaction-preserving mapping from dl-atoms to aggregates, the well-founded semantics of dl-programs by Eiter et al., coincides with the well-founded semantics of aggregate programs, defined by Pelov et al. as the least fixpoint of a 3-valued immediate consequence operator under the ultimate approximating aggregate. This result enables an alternative definition of the same well-founded semantics for aggregate programs, in terms of the first principle of unfounded sets. Furthermore, the result can be applied, in a uniform manner, to define the well-founded semantics for dl-programs with aggregates, which agrees with the existing semantics when either dl-atoms or aggregates are absent
    • …
    corecore