211 research outputs found

    Describing Videos by Exploiting Temporal Structure

    Full text link
    Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.Comment: Accepted to ICCV15. This version comes with code release and supplementary materia

    Temporal activity detection in untrimmed videos with recurrent neural networks

    Get PDF
    This work proposes a simple pipeline to classify and temporally localize activities in untrimmed videos. Our system uses features from a 3D Convolutional Neural Network (C3D) as input to train a a recurrent neural network (RNN) that learns to classify video clips of 16 frames. After clip prediction, we post-process the output of the RNN to assign a single activity label to each video, and determine the temporal boundaries of the activity within the video. We show how our system can achieve competitive results in both tasks with a simple architecture. We evaluate our method in the ActivityNet Challenge 2016, achieving a 0.5874 mAP and a 0.2237 mAP in the classification and detection tasks, respectively. Our code and models are publicly available at: https://imatge-upc.github.io/activitynet-2016-cvprw/Peer ReviewedPostprint (published version

    Hierarchically-Attentive RNN for Album Summarization and Storytelling

    Full text link
    We address the problem of end-to-end visual storytelling. Given a photo album, our model first selects the most representative (summary) photos, and then composes a natural language story for the album. For this task, we make use of the Visual Storytelling dataset and a model composed of three hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode the album photos, select representative (summary) photos, and compose the story. Automatic and human evaluations show our model achieves better performance on selection, generation, and retrieval than baselines.Comment: To appear at EMNLP-2017 (7 pages

    A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks

    Full text link
    We present a demonstration of a neural interactive-predictive system for tackling multimodal sequence to sequence tasks. The system generates text predictions to different sequence to sequence tasks: machine translation, image and video captioning. These predictions are revised by a human agent, who introduces corrections in the form of characters. The system reacts to each correction, providing alternative hypotheses, compelling with the feedback provided by the user. The final objective is to reduce the human effort required during this correction process. This system is implemented following a client-server architecture. For accessing the system, we developed a website, which communicates with the neural model, hosted in a local server. From this website, the different tasks can be tackled following the interactive-predictive framework. We open-source all the code developed for building this system. The demonstration in hosted in http://casmacat.prhlt.upv.es/interactive-seq2seq.Comment: ACL 2019 - System demonstration
    corecore