8,909 research outputs found

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Inertial-sensor bias estimation from brightness/depth images and based on SO(3)-invariant integro/partial-differential equations on the unit sphere

    Full text link
    Constant biases associated to measured linear and angular velocities of a moving object can be estimated from measurements of a static scene by embedded brightness and depth sensors. We propose here a Lyapunov-based observer taking advantage of the SO(3)-invariance of the partial differential equations satisfied by the measured brightness and depth fields. The resulting asymptotic observer is governed by a non-linear integro/partial differential system where the two independent scalar variables indexing the pixels live on the unit sphere of the 3D Euclidian space. The observer design and analysis are strongly simplified by coordinate-free differential calculus on the unit sphere equipped with its natural Riemannian structure. The observer convergence is investigated under C^1 regularity assumptions on the object motion and its scene. It relies on Ascoli-Arzela theorem and pre-compactness of the observer trajectories. It is proved that the estimated biases converge towards the true ones, if and only if, the scene admits no cylindrical symmetry. The observer design can be adapted to realistic sensors where brightness and depth data are only available on a subset of the unit sphere. Preliminary simulations with synthetic brightness and depth images (corrupted by noise around 10%) indicate that such Lyapunov-based observers should be robust and convergent for much weaker regularity assumptions.Comment: 30 pages, 6 figures, submitte

    Learning Wavefront Coding for Extended Depth of Field Imaging

    Get PDF
    Depth of field is an important factor of imaging systems that highly affects the quality of the acquired spatial information. Extended depth of field (EDoF) imaging is a challenging ill-posed problem and has been extensively addressed in the literature. We propose a computational imaging approach for EDoF, where we employ wavefront coding via a diffractive optical element (DOE) and we achieve deblurring through a convolutional neural network. Thanks to the end-to-end differentiable modeling of optical image formation and computational post-processing, we jointly optimize the optical design, i.e., DOE, and the deblurring through standard gradient descent methods. Based on the properties of the underlying refractive lens and the desired EDoF range, we provide an analytical expression for the search space of the DOE, which is instrumental in the convergence of the end-to-end network. We achieve superior EDoF imaging performance compared to the state of the art, where we demonstrate results with minimal artifacts in various scenarios, including deep 3D scenes and broadband imaging

    Rectification from Radially-Distorted Scales

    Full text link
    This paper introduces the first minimal solvers that jointly estimate lens distortion and affine rectification from repetitions of rigidly transformed coplanar local features. The proposed solvers incorporate lens distortion into the camera model and extend accurate rectification to wide-angle images that contain nearly any type of coplanar repeated content. We demonstrate a principled approach to generating stable minimal solvers by the Grobner basis method, which is accomplished by sampling feasible monomial bases to maximize numerical stability. Synthetic and real-image experiments confirm that the solvers give accurate rectifications from noisy measurements when used in a RANSAC-based estimator. The proposed solvers demonstrate superior robustness to noise compared to the state-of-the-art. The solvers work on scenes without straight lines and, in general, relax the strong assumptions on scene content made by the state-of-the-art. Accurate rectifications on imagery that was taken with narrow focal length to near fish-eye lenses demonstrate the wide applicability of the proposed method. The method is fully automated, and the code is publicly available at https://github.com/prittjam/repeats.Comment: pre-prin

    On the Design and Analysis of Multiple View Descriptors

    Full text link
    We propose an extension of popular descriptors based on gradient orientation histograms (HOG, computed in a single image) to multiple views. It hinges on interpreting HOG as a conditional density in the space of sampled images, where the effects of nuisance factors such as viewpoint and illumination are marginalized. However, such marginalization is performed with respect to a very coarse approximation of the underlying distribution. Our extension leverages on the fact that multiple views of the same scene allow separating intrinsic from nuisance variability, and thus afford better marginalization of the latter. The result is a descriptor that has the same complexity of single-view HOG, and can be compared in the same manner, but exploits multiple views to better trade off insensitivity to nuisance variability with specificity to intrinsic variability. We also introduce a novel multi-view wide-baseline matching dataset, consisting of a mixture of real and synthetic objects with ground truthed camera motion and dense three-dimensional geometry

    A Study of mutispectral temporal scene normalization using pseudo-invariant features, applied to Landsat TM imagery

    Get PDF
    A new technique for performing temporal image normalization using pseudo-invariant features was investigated. The technique was applied to the six reflected spectral band images of the Landsat TM sensors. The temporal normalization of pseudo-invariant features yielded linear normalizing functions for all bands. The errors in the normalization of pseudo-invariant features was determined to be on the order of three digital counts, which was estimated to be equivalent to reflectance errors on the order of one percent reflectance. Temporal normalization of all features in the Landsat scene shows great potential for both quantitative and qualitative temporal change detection
    • …
    corecore