29 research outputs found

    Expandergraphen und Derandomisierung

    Get PDF
    In der vorliegenden Arbeit wird der Artikel 'Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications' von Wigderson und Xiao detailliert nachvollzogen. Es wird aufgezeigt, wie der Beweis der matrixwertigen Chernoff-Ungleichung von Ahlswede und Winter verlĂ€uft. Mit diesen Ergebnissen und der Methode der pessimistischen SchĂ€tzer wird schließlich der Beweis des Alon-Roichman-Theorems entrandomisiert

    Pipage Rounding, Pessimistic Estimators and Matrix Concentration

    Get PDF
    Pipage rounding is a dependent random sampling technique that has several interesting properties and diverse applications. One property that has been particularly useful is negative correlation of the resulting vector. Unfortunately negative correlation has its limitations, and there are some further desirable properties that do not seem to follow from existing techniques. In particular, recent concentration results for sums of independent random matrices are not known to extend to a negatively dependent setting. We introduce a simple but useful technique called concavity of pessimistic estimators. This technique allows us to show concentration of submodular functions and conc

    A Matrix Hyperbolic Cosine Algorithm and Applications

    Full text link
    In this paper, we generalize Spencer's hyperbolic cosine algorithm to the matrix-valued setting. We apply the proposed algorithm to several problems by analyzing its computational efficiency under two special cases of matrices; one in which the matrices have a group structure and an other in which they have rank-one. As an application of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size nn, it constructs an expanding Cayley graph of logarithmic degree in near-optimal O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices, which implies an improved deterministic algorithm for spectral graph sparsification of dense graphs. In addition, we give an elementary connection between spectral sparsification of positive semi-definite matrices and element-wise matrix sparsification. As a consequence, we obtain improved element-wise sparsification algorithms for diagonally dominant-like matrices.Comment: 16 pages, simplified proof and corrected acknowledging of prior work in (current) Section

    Sparse Sums of Positive Semidefinite Matrices

    Full text link
    Recently there has been much interest in "sparsifying" sums of rank one matrices: modifying the coefficients such that only a few are nonzero, while approximately preserving the matrix that results from the sum. Results of this sort have found applications in many different areas, including sparsifying graphs. In this paper we consider the more general problem of sparsifying sums of positive semidefinite matrices that have arbitrary rank. We give several algorithms for solving this problem. The first algorithm is based on the method of Batson, Spielman and Srivastava (2009). The second algorithm is based on the matrix multiplicative weights update method of Arora and Kale (2007). We also highlight an interesting connection between these two algorithms. Our algorithms have numerous applications. We show how they can be used to construct graph sparsifiers with auxiliary constraints, sparsifiers of hypergraphs, and sparse solutions to semidefinite programs

    A Matrix Expander Chernoff Bound

    Full text link
    We prove a Chernoff-type bound for sums of matrix-valued random variables sampled via a random walk on an expander, confirming a conjecture due to Wigderson and Xiao. Our proof is based on a new multi-matrix extension of the Golden-Thompson inequality which improves in some ways the inequality of Sutter, Berta, and Tomamichel, and may be of independent interest, as well as an adaptation of an argument for the scalar case due to Healy. Secondarily, we also provide a generic reduction showing that any concentration inequality for vector-valued martingales implies a concentration inequality for the corresponding expander walk, with a weakening of parameters proportional to the squared mixing time.Comment: Fixed a minor bug in the proof of Theorem 3.

    Low Rank Matrix-Valued Chernoff Bounds and Approximate Matrix Multiplication

    Full text link
    In this paper we develop algorithms for approximating matrix multiplication with respect to the spectral norm. Let A\in{\RR^{n\times m}} and B\in\RR^{n \times p} be two matrices and \eps>0. We approximate the product A^\top B using two down-sampled sketches, \tilde{A}\in\RR^{t\times m} and \tilde{B}\in\RR^{t\times p}, where t\ll n such that \norm{\tilde{A}^\top \tilde{B} - A^\top B} \leq \eps \norm{A}\norm{B} with high probability. We use two different sampling procedures for constructing \tilde{A} and \tilde{B}; one of them is done by i.i.d. non-uniform sampling rows from A and B and the other is done by taking random linear combinations of their rows. We prove bounds that depend only on the intrinsic dimensionality of A and B, that is their rank and their stable rank; namely the squared ratio between their Frobenius and operator norm. For achieving bounds that depend on rank we employ standard tools from high-dimensional geometry such as concentration of measure arguments combined with elaborate \eps-net constructions. For bounds that depend on the smaller parameter of stable rank this technology itself seems weak. However, we show that in combination with a simple truncation argument is amenable to provide such bounds. To handle similar bounds for row sampling, we develop a novel matrix-valued Chernoff bound inequality which we call low rank matrix-valued Chernoff bound. Thanks to this inequality, we are able to give bounds that depend only on the stable rank of the input matrices...Comment: 15 pages, To appear in 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2011

    Approximation properties of certain operator-induced norms on Hilbert spaces

    Get PDF
    We consider a class of operator-induced norms, acting as finite-dimensional surrogates to the L2 norm, and study their approximation properties over Hilbert subspaces of L2 . The class includes, as a special case, the usual empirical norm encountered, for example, in the context of nonparametric regression in reproducing kernel Hilbert spaces (RKHS). Our results have implications to the analysis of M-estimators in models based on finite-dimensional linear approximation of functions, and also to some related packing problems
    corecore