369 research outputs found

    Depth Superresolution using Motion Adaptive Regularization

    Full text link
    Spatial resolution of depth sensors is often significantly lower compared to that of conventional optical cameras. Recent work has explored the idea of improving the resolution of depth using higher resolution intensity as a side information. In this paper, we demonstrate that further incorporating temporal information in videos can significantly improve the results. In particular, we propose a novel approach that improves depth resolution, exploiting the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. Experiments confirm that the proposed approach substantially improves the quality of the estimated high-resolution depth. Our approach can be a first component in systems using vision techniques that rely on high resolution depth information

    Signal reconstruction via operator guiding

    Full text link
    Signal reconstruction from a sample using an orthogonal projector onto a guiding subspace is theoretically well justified, but may be difficult to practically implement. We propose more general guiding operators, which increase signal components in the guiding subspace relative to those in a complementary subspace, e.g., iterative low-pass edge-preserving filters for super-resolution of images. Two examples of super-resolution illustrate our technology: a no-flash RGB photo guided using a high resolution flash RGB photo, and a depth image guided using a high resolution RGB photo.Comment: 5 pages, 8 figures. To appear in Proceedings of SampTA 2017: Sampling Theory and Applications, 12th International Conference, July 3-7, 2017, Tallinn, Estoni

    Super-Resolution Textured Digital Surface Map (DSM) Formation by Selecting the Texture From Multiple Perspective Texel Images Taken by a Low-Cost Small Unmanned Aerial Vehicle (UAV)

    Get PDF
    Textured Digital Surface Model (TDSM) is a three-dimensional terrain map with texture overlaid on it. Utah State University has developed a texel camera which can capture a 3D image called a texel image. A TDSM can be constructed by combining these multiple texel images, which is much cheaper than the traditional method. The overall goal is to create a TDSM for a larger area that is cheaper and equally accurate as the TDSM created using a high-cost system. The images obtained from such an inexpensive camera have a lot of errors. To create scientifically accurate TDSM, the error presented in the image must be corrected. An automatic process to create TDSM is presented that can handle a large number of input texel images. The advantage of using such a large set of input images is that they can cover a large area on the ground, making the algorithm suitable for large-scale applications. This is done by processing images and correcting them in a windowing manner. Furthermore, the appearance of the final 3D terrain map is improved by selecting the texture from many candidate images. This ensures that the best texture is selected. The selection criteria are discussed. Lastly, a method to increase the resolution of the final image is discussed. The methods described in this dissertation improve the current technique of creating TDSM, and the results are shown and analyzed

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with
    • …
    corecore