10,853 research outputs found

    Study of radio resource sharing for future mobile WiMAX applications with relays

    Get PDF

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    A line-of-sight optimised MIMO architecture for outdoor environments

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Indoor Massive MIMO Deployments for Uniformly High Wireless Capacity

    Full text link
    Providing consistently high wireless capacity is becoming increasingly important to support the applications required by future digital enterprises. In this paper, we propose Eigen-direction-aware ZF (EDA-ZF) with partial coordination among base stations (BSs) and distributed interference suppression as a practical approach to achieve this objective. We compare our solution with Zero Forcing (ZF), entailing neither BS coordination or inter-cell interference mitigation, and Network MIMO (NeMIMO), where full BS coordination enables centralized inter-cell interference management. We also evaluate the performance of said schemes for three sub-6 GHz deployments with varying BS densities -- sparse, intermediate, and dense -- all with fixed total number of antennas and radiated power. Extensive simulations show that: (i) indoor massive MIMO implementing the proposed EDA-ZF provides uniformly good rates for all users; (ii) indoor network densification is detrimental unless full coordination is implemented; (iii) deploying NeMIMO pays off under strong outdoor interference, especially for cell-edge users
    • …
    corecore