1,105 research outputs found

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Control logic distribution trade-offs in software-defined wireless networks

    Get PDF
    The SDN (Software-Defined Networks) architecture separates the data and the control planes of the networks. It logically centralizes the control of a network in a central point that is an SDN controller, which acts as a brain of the network and is in charge of telling each network node how to forward incoming packets by installing the appropriate forwarding rules. One of the main advantages it brings is programmability through this single entity (the logical controller) with which network management applications must interact to apply their policies. Through agreed-upon APIs, the network managers can exploit the full potential of SDN. SDN generally assumes ideal control channels between the SDN controller and the network nodes, which may not be the case in challenging environments that are becoming more common due to dense deployment of small cells (SCs) with reduced coverage in 5G and beyond 5G deployments. In 5G and beyond 5G use cases, cost-effective wireless transport networks are required to connect the SCs. In this context, mmWave technology is a good player to connect the SCs as mmWave provides larger radio spectrum chunks that in turn provide larger bandwidth and higher data rate. To manage the dense deployment of SCs in the mobile networks, on the network management/control front, network programmability and virtualization are also an integral part of 5G and beyond 5G networks. In this regard, to provide end-to-end connectivity, management and orchestration of all the segments of the networks ranging from RAN (Radio Access Network), transport network to the core is vital. On the transport networks side (the main focus of the dissertation), SDN plays an important role as SDN enables programmability and virtualization in the network. Though SDN Provides huge flexibility in network management by splitting the control plane from the data plane, it has some limitations in wireless networks context as separation of the control plane from the data plane introduce the extra points of failure in the SDN paradigm (e.g., control communication channel failure, SDN controller failure). In the wide-area networks (WAN) scenarios where in-band channels (e.g., microwave or mmWave links) are responsible to carry control traffic between the forwarding nodes and the SDN controller, the assumption of the availability of a reliable network may not be possible as the performance of the wireless link changes with the environmental conditions, which leads to a high risk of experiencing channel impairments, which might cause centralized SDN operation failure by affecting communication between the transport component of SCs and the SDN controller. To overcome SDN from failure, the dissertation presents a hybrid SDN scheme that explores the benefits of centralized and distributed operations depending on control communication channel conditions. Our hybrid SDN approach combines both centralized and distributed modes in the same node to form a hybrid control plane architecture. We introduce a local agent in the node that is composed of a monitoring framework to detect reliability of the control communication channel and a decision module that conceive a novel control logic switching algorithm to make a decision whether to operate in a centralized or distributed mode. We evaluate the proposed solution under a variety of unreliable network conditions (e.g., link impairments, control packet loss) to investigate the operational performance of the hybrid SDN during high loss conditions. The experimental results show that the proposed hybrid SDN solution substantially improves the aggregated throughput, particularly when control channel packet loss ratios increase, which in turn keeps the network operational in hard conditions where the centralized SDN would result in a non-operational network.La arquitectura SDN (Software-Defined Networks) separa los planos de datos y control de las redes. Centraliza lógicamente el control de una red en un controlador SDN. Una de las principales ventajas que aporta es la programabilidad a través de esta única entidad (el controlador lógico) con la que las aplicaciones de gestión de red deben interactuar para aplicar sus políticas. SDN generalmente asume canales de control ideales entre el controlador SDN y los nodos de la red, lo que puede no ser el caso en entornos inalámbricos (o menos estables) que se están volviendo más comunes debido al despliegue denso de celdas pequeñas (SC) con cobertura reducida en 5G (y más allá). En los casos de uso de futuras redes, se requieren redes de transporte inalámbricas rentables para conectar los SC. En este contexto, la tecnología mmWave es apropiada para conectar las SC, ya que mmWave proporciona fragmentos de espectro más grandes que, a su vez, proporcionan un mayor ancho de banda y una mayor velocidad de datos. Para administrar el despliegue denso de SC en redes móviles, se requiere administración/control de la red, de la virtualización y de la programabilidad de la red, ay que son parte integral de las redes 5G/6G. En este sentido, para proporcionar conectividad de extremo a extremo, es vital la gestión y la orquestación de todos los segmentos de red que van desde la RAN (Red de acceso radio), la red de transporte hasta el núcleo de la red. Por lo que respecte a las redes de transporte (el enfoque principal de la tesis), SDN juega un papel importante ya que SDN permite la programabilidad y la virtualización en la red. Aunque SDN proporciona una gran flexibilidad en la gestión de redes al dividir el plano de control del plano de datos, tiene algunas limitaciones en el contexto de las redes inalámbricas, ya que la separación del plano de control del plano de datos introduce puntos adicionales de fallo en el paradigma SDN (p. ej., fallo del canal de comunicación, fallo del controlador SDN). En los escenarios de redes de área extendida (WAN) donde los canales en-banda (p. ej., enlaces de microondas o mmWave) son responsables de transportar el tráfico de control entre los nodos de red y el controlador SDN, la suposición de la disponibilidad de una red confiable puede no ser posible, ya que el rendimiento del enlace inalámbrico cambia con las condiciones ambientales, lo que conduce a un alto riesgo de experimentar deterioros en el canal, lo que podría causar errores en la operación SDN centralizada al afectar la comunicación entre el componente de transporte de los SC y el controlador SDN. Para superar estos problemas de SDN, la tesis presenta un esquema de SDN híbrido que explora los beneficios de las operaciones centralizadas y distribuidas según sean las condiciones del canal de comunicación de control. Nuestro enfoque SDN híbrido combina los modos centralizados y distribuidos en el mismo nodo para formar una arquitectura de plano de control híbrido. Introducimos un agente local en el nodo que se compone de un marco de monitorización para detectar la confiabilidad del canal de comunicación de control y un módulo de decisión que concibe un algoritmo de conmutación de lógica de control novedoso para tomar la decisión de operar en un modo centralizado o distribuido. Evaluamos la solución propuesta bajo una variedad de condiciones de red poco confiables (p. ej., deterioros de enlace, pérdida de paquetes de control) para investigar el rendimiento operativo de la SDN híbrida durante condiciones de alta pérdida. Los resultados experimentales muestran que la solución SDN híbrida propuesta mejora sustancialmente el rendimiento agregado, particularmente cuando aumentan las tasas de pérdida de paquetes del canal de control, lo que a su vez mantiene la red operativa en condiciones difíciles donde la SDN centralizada daría como resultado una red no operativa.Postprint (published version
    corecore