23,896 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    Self organising cloud cells: a resource efficient network densification strategy

    Get PDF
    Network densification is envisioned as the key enabler for 2020 vision that requires cellular systems to grow in capacity by hundreds of times to cope with unprecedented traffic growth trends being witnessed since advent of broadband on the move. However, increased energy consumption and complex mobility management associated with network densifications remain as the two main challenges to be addressed before further network densification can be exploited on a wide scale. In the wake of these challenges, this paper proposes and evaluates a novel dense network deployment strategy for increasing the capacity of future cellular systems without sacrificing energy efficiency and compromising mobility performance. Our deployment architecture consists of smart small cells, called cloud nodes, which provide data coverage to individual users on a demand bases while taking into account the spatial and temporal dynamics of user mobility and traffic. The decision to activate the cloud nodes, such that certain performance objectives at system level are targeted, is carried out by the overlaying macrocell based on a fuzzy-logic framework. We also compare the proposed architecture with conventional macrocell only deployment and pure microcell-based dense deployment in terms of blocking probability, handover probability and energy efficiency and discuss and quantify the trade-offs therein

    Energy efficiency in heterogeneous wireless access networks

    Get PDF
    In this article, we bring forward the important aspect of energy savings in wireless access networks. We specifically focus on the energy saving opportunities in the recently evolving heterogeneous networks (HetNets), both Single- RAT and Multi-RAT. Issues such as sleep/wakeup cycles and interference management are discussed for co-channel Single-RAT HetNets. In addition to that, a simulation based study for LTE macro-femto HetNets is presented, indicating the need for dynamic energy efficient resource management schemes. Multi-RAT HetNets also come with challenges such as network integration, combined resource management and network selection. Along with a discussion on these challenges, we also investigate the performance of the conventional WLAN-first network selection mechanism in terms of energy efficiency (EE) and suggest that EE can be improved by the application of intelligent call admission control policies

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    corecore