9,110 research outputs found

    Deploying Semantic Web Services-Based Applications in the e-Government Domain

    Get PDF
    Joining up services in e-Government usually implies governmental agencies acting in concert without a central control regime. This requires to the sharing scattered and heterogeneous data. Semantic Web Service (SWS) technology can help to integrate, mediate and reason between these datasets. However, since a few real-world applications have been developed, it is still unclear which are the actual benefits and issues of adopting such a technology in the e-Government domain. In this paper, we contribute to raising awareness of the potential benefits in the e-Government communityby analyzing motivations, requirements and expected results, before proposing a reusable SWS-based framework. We demonstrate the application of this framework by showing how integration and interoperability emerge from this model through a cooperative and multi-viewpoint methodology. Finally, we illustrate added values and lessons learned by two compelling case studies: a change of circumstances notification system and a GIS-based emergency planning system, and describe key challenges which remain to be addressed

    Knowledge society arguments revisited in the semantic technologies era

    No full text
    In the light of high profile governmental and international efforts to realise the knowledge society, I review the arguments made for and against it from a technology standpoint. I focus on advanced knowledge technologies with applications on a large scale and in open- ended environments like the World Wide Web and its ambitious extension, the Semantic Web. I argue for a greater role of social networks in a knowledge society and I explore the recent developments in mechanised trust, knowledge certification, and speculate on their blending with traditional societal institutions. These form the basis of a sketched roadmap for enabling technologies for a knowledge society

    Practitioner requirements for integrated Knowledge-Based Engineering in Product Lifecycle Management.

    No full text
    The effective management of knowledge as capital is considered essential to the success of engineering product/service systems. As Knowledge Management (KM) and Product Lifecycle Management (PLM) practice gain industrial adoption, the question of functional overlaps between both the approaches becomes evident. This article explores the interoperability between PLM and Knowledge-Based Engineering (KBE) as a strategy for engineering KM. The opinion of key KBE/PLM practitioners are systematically captured and analysed. A set of ranked business functionalities to be fulfiled by the KBE/PLM systems integration is elicited. The article provides insights for the researchers and the practitioners playing both the user and development roles on the future needs for knowledge systems based on PLM

    SIMDAT

    No full text

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Semantic Web Techniques to Support Interoperability in Distributed Networked Environments

    No full text
    We explore two Semantic Web techniques arising from ITA research into semantic alignment and interoperability in distributed networks. The first is POAF (Portable Ontology Aligned Fragments) which addresses issues relating to the portability and usage of ontology alignments. POAF uses an ontology fragmentation strategy to achieve portability, and enables subsequent usage through a form of automated ontology modularization. The second technique, SWEDER (Semantic Wrapping of Existing Data sources with Embedded Rules), is grounded in the creation of lightweight ontologies to semantically wrap existing data sources, to facilitate rapid semantic integration through representational homogeneity. The semantic integration is achieved through the creation of context ontologies which define the integrations and provide a portable definition of the integration rules in the form of embedded SPARQL construct clauses. These two Semantic Web techniques address important practical issues relevant to the potential future adoption of ontologies in distributed network environments
    • 

    corecore