63 research outputs found

    The interval constrained 3-coloring problem

    Get PDF
    In this paper, we settle the open complexity status of interval constrained coloring with a fixed number of colors. We prove that the problem is already NP-complete if the number of different colors is 3. Previously, it has only been known that it is NP-complete, if the number of colors is part of the input and that the problem is solvable in polynomial time, if the number of colors is at most 2. We also show that it is hard to satisfy almost all of the constraints for a feasible instance.Comment: minor revisio

    Improved Approximation Algorithms for Stochastic Matching

    Full text link
    In this paper we consider the Stochastic Matching problem, which is motivated by applications in kidney exchange and online dating. We are given an undirected graph in which every edge is assigned a probability of existence and a positive profit, and each node is assigned a positive integer called timeout. We know whether an edge exists or not only after probing it. On this random graph we are executing a process, which one-by-one probes the edges and gradually constructs a matching. The process is constrained in two ways: once an edge is taken it cannot be removed from the matching, and the timeout of node vv upper-bounds the number of edges incident to vv that can be probed. The goal is to maximize the expected profit of the constructed matching. For this problem Bansal et al. (Algorithmica 2012) provided a 33-approximation algorithm for bipartite graphs, and a 44-approximation for general graphs. In this work we improve the approximation factors to 2.8452.845 and 3.7093.709, respectively. We also consider an online version of the bipartite case, where one side of the partition arrives node by node, and each time a node bb arrives we have to decide which edges incident to bb we want to probe, and in which order. Here we present a 4.074.07-approximation, improving on the 7.927.92-approximation of Bansal et al. The main technical ingredient in our result is a novel way of probing edges according to a random but non-uniform permutation. Patching this method with an algorithm that works best for large probability edges (plus some additional ideas) leads to our improved approximation factors

    Detecting Activations over Graphs using Spanning Tree Wavelet Bases

    Full text link
    We consider the detection of activations over graphs under Gaussian noise, where signals are piece-wise constant over the graph. Despite the wide applicability of such a detection algorithm, there has been little success in the development of computationally feasible methods with proveable theoretical guarantees for general graph topologies. We cast this as a hypothesis testing problem, and first provide a universal necessary condition for asymptotic distinguishability of the null and alternative hypotheses. We then introduce the spanning tree wavelet basis over graphs, a localized basis that reflects the topology of the graph, and prove that for any spanning tree, this approach can distinguish null from alternative in a low signal-to-noise regime. Lastly, we improve on this result and show that using the uniform spanning tree in the basis construction yields a randomized test with stronger theoretical guarantees that in many cases matches our necessary conditions. Specifically, we obtain near-optimal performance in edge transitive graphs, kk-nearest neighbor graphs, and ϵ\epsilon-graphs

    Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines

    Get PDF
    We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2−c)(3/2-c)-approximation algorithm for some fixed c>0c>0, improving upon the long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM, 2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/23/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure
    • …
    corecore