1,957 research outputs found

    Online Dependent Rounding Schemes

    Full text link
    We study the abstract problem of rounding fractional bipartite bb-matchings online. The input to the problem is an unknown fractional bipartite bb-matching, exposed node-by-node on one side. The objective is to maximize the \emph{rounding ratio} of the output matching M\mathcal{M}, which is the minimum over all fractional bb-matchings x\mathbf{x}, and edges ee, of the ratio Pr[eM]/xe\Pr[e\in \mathcal{M}]/x_e. In offline settings, many dependent rounding schemes achieving a ratio of one and strong negative correlation properties are known (e.g., Gandhi et al., J.ACM'06 and Chekuri et al., FOCS'10), and have found numerous applications. Motivated by online applications, we present \emph{online dependent-rounding schemes} (ODRSes) for bb-matching. For the special case of uniform matroids (single offline node), we present a simple online algorithm with a rounding ratio of one. Interestingly, we show that our algorithm yields \emph{the same distribution} as its classic offline counterpart, pivotal sampling (Srinivasan, FOCS'01), and so inherits the latter's strong correlation properties. In arbitrary bipartite graphs, an online rounding ratio of one is impossible, and we show that a combination of our uniform matroid ODRS with repeated invocations of \emph{offline} contention resolution schemes (CRSes) yields a rounding ratio of 11/e0.6321-1/e\approx 0.632. Our main technical contribution is an ODRS breaking this pervasive bound, yielding rounding ratios of 0.6460.646 and 0.6520.652 for bb-matchings and simple matchings, respectively. We obtain these results by grouping nodes and using CRSes for negatively-correlated distributions, together with a new method we call \emph{group discount and individual markup}, analyzed using the theory of negative association. We present a number of applications of our ODRSes to online edge coloring, several stochastic optimization problems, and algorithmic fairness

    Dependent rounding with strong negative-correlation, and scheduling on unrelated machines to minimize completion time

    Full text link
    We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment yy of values to edges of graph G=(UV,E)G = (U \cup V, E), the algorithms return an integral solution YY such that each right-node vVv \in V has at most one neighboring edge ff with Yf=1Y_f = 1, and where the variables YeY_e also satisfy broad nonpositive-correlation properties. In particular, for any edges e1,e2e_1, e_2 sharing a left-node uUu \in U, the variables Ye1,Ye2Y_{e_1}, Y_{e_2} have strong negative-correlation properties, i.e. the expectation of Ye1Ye2Y_{e_1} Y_{e_2} is significantly below ye1ye2y_{e_1} y_{e_2}. This algorithm is a refinement of a dependent-rounding algorithm of Im \& Shadloo (2020) based on simulation of Poisson processes. Our algorithm allows greater flexibility, in particular, it allows ``irregular'' fractional assignments, and it gives more refined bounds on the negative correlation. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a 1.4071.407-approximation for this problem. This significantly improves over the prior 1.451.45-approximation ratio of Im & Li (2023)

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit peQ+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wjZ+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    Improved Approximation Algorithms for Stochastic Matching

    Full text link
    In this paper we consider the Stochastic Matching problem, which is motivated by applications in kidney exchange and online dating. We are given an undirected graph in which every edge is assigned a probability of existence and a positive profit, and each node is assigned a positive integer called timeout. We know whether an edge exists or not only after probing it. On this random graph we are executing a process, which one-by-one probes the edges and gradually constructs a matching. The process is constrained in two ways: once an edge is taken it cannot be removed from the matching, and the timeout of node vv upper-bounds the number of edges incident to vv that can be probed. The goal is to maximize the expected profit of the constructed matching. For this problem Bansal et al. (Algorithmica 2012) provided a 33-approximation algorithm for bipartite graphs, and a 44-approximation for general graphs. In this work we improve the approximation factors to 2.8452.845 and 3.7093.709, respectively. We also consider an online version of the bipartite case, where one side of the partition arrives node by node, and each time a node bb arrives we have to decide which edges incident to bb we want to probe, and in which order. Here we present a 4.074.07-approximation, improving on the 7.927.92-approximation of Bansal et al. The main technical ingredient in our result is a novel way of probing edges according to a random but non-uniform permutation. Patching this method with an algorithm that works best for large probability edges (plus some additional ideas) leads to our improved approximation factors

    Energy Efficient Scheduling via Partial Shutdown

    Get PDF
    Motivated by issues of saving energy in data centers we define a collection of new problems referred to as "machine activation" problems. The central framework we introduce considers a collection of mm machines (unrelated or related) with each machine ii having an {\em activation cost} of aia_i. There is also a collection of nn jobs that need to be performed, and pi,jp_{i,j} is the processing time of job jj on machine ii. We assume that there is an activation cost budget of AA -- we would like to {\em select} a subset SS of the machines to activate with total cost a(S)Aa(S) \le A and {\em find} a schedule for the nn jobs on the machines in SS minimizing the makespan (or any other metric). For the general unrelated machine activation problem, our main results are that if there is a schedule with makespan TT and activation cost AA then we can obtain a schedule with makespan \makespanconstant T and activation cost \costconstant A, for any ϵ>0\epsilon >0. We also consider assignment costs for jobs as in the generalized assignment problem, and using our framework, provide algorithms that minimize the machine activation and the assignment cost simultaneously. In addition, we present a greedy algorithm which only works for the basic version and yields a makespan of 2T2T and an activation cost A(1+lnn)A (1+\ln n). For the uniformly related parallel machine scheduling problem, we develop a polynomial time approximation scheme that outputs a schedule with the property that the activation cost of the subset of machines is at most AA and the makespan is at most (1+ϵ)T(1+\epsilon) T for any ϵ>0\epsilon >0

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρ1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16ϵ17/16 - \epsilon for ϵ>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGWϵ1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2ϵ2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation

    Grothendieck inequalities for semidefinite programs with rank constraint

    Get PDF
    Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: a difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap of the Goemans-Williamson approximation algorithm for MAX CUT can be seen as a Grothendieck inequality. In this paper we consider Grothendieck inequalities for ranks greater than 1 and we give two applications: approximating ground states in the n-vector model in statistical mechanics and XOR games in quantum information theory.Comment: 22 page
    corecore