46,446 research outputs found

    Low-complexity distributed issue queue

    Get PDF
    As technology evolves, power density significantly increases and cooling systems become more complex and expensive. The issue logic is one of the processor hotspots and, at the same time, its latency is crucial for the processor performance. We present a low-complexity FP issue logic (MB/spl I.bar/distr) that achieves high performance with small energy requirements. The MB/spl I.bar/distr scheme is based on classifying instructions and dispatching them into a set of queues depending on their data dependences. These instructions are selected for issuing based on an estimation of when their operands will be available, so the conventional wakeup activity is not required. Additionally, the functional units are distributed across the different queues. The energy required by the proposed scheme is substantially lower than that required by a conventional issue design, even if the latter has the ability of waking-up only unready operands. MB/spl I.bar/distr scheme reduces the energy-delay product by 35% and the energy-delay product by 18% with respect to a state-of-the-art approach.Peer ReviewedPostprint (published version

    Extending the Nested Parallel Model to the Nested Dataflow Model with Provably Efficient Schedulers

    Full text link
    The nested parallel (a.k.a. fork-join) model is widely used for writing parallel programs. However, the two composition constructs, i.e. "\parallel" (parallel) and ";;" (serial), are insufficient in expressing "partial dependencies" or "partial parallelism" in a program. We propose a new dataflow composition construct "\leadsto" to express partial dependencies in algorithms in a processor- and cache-oblivious way, thus extending the Nested Parallel (NP) model to the \emph{Nested Dataflow} (ND) model. We redesign several divide-and-conquer algorithms ranging from dense linear algebra to dynamic-programming in the ND model and prove that they all have optimal span while retaining optimal cache complexity. We propose the design of runtime schedulers that map ND programs to multicore processors with multiple levels of possibly shared caches (i.e, Parallel Memory Hierarchies) and provide theoretical guarantees on their ability to preserve locality and load balance. For this, we adapt space-bounded (SB) schedulers for the ND model. We show that our algorithms have increased "parallelizability" in the ND model, and that SB schedulers can use the extra parallelizability to achieve asymptotically optimal bounds on cache misses and running time on a greater number of processors than in the NP model. The running time for the algorithms in this paper is O(i=0h1Q(t;σMi)Cip)O\left(\frac{\sum_{i=0}^{h-1} Q^{*}({\mathsf t};\sigma\cdot M_i)\cdot C_i}{p}\right), where QQ^{*} is the cache complexity of task t{\mathsf t}, CiC_i is the cost of cache miss at level-ii cache which is of size MiM_i, σ(0,1)\sigma\in(0,1) is a constant, and pp is the number of processors in an hh-level cache hierarchy

    An Extended Stable Marriage Problem Algorithm for Clone Detection

    Full text link
    Code cloning negatively affects industrial software and threatens intellectual property. This paper presents a novel approach to detecting cloned software by using a bijective matching technique. The proposed approach focuses on increasing the range of similarity measures and thus enhancing the precision of the detection. This is achieved by extending a well-known stable-marriage problem (SMP) and demonstrating how matches between code fragments of different files can be expressed. A prototype of the proposed approach is provided using a proper scenario, which shows a noticeable improvement in several features of clone detection such as scalability and accuracy.Comment: 20 pages, 10 figures, 6 table
    corecore