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Abstract 
 

As technology evolves, power density significantly 
increases and cooling systems become more complex and 
expensive. The issue logic is one of the processor hotspots 
and, at the same time, its latency is crucial for the 
processor performance. 

This paper presents a low-complexity FP issue logic 
(MB_distr) that achieves high performance with small 
energy requirements. The MB_distr scheme is based on 
classifying instructions and dispatching them into a set of 
queues depending on their data dependences. These 
instructions are selected for issuing based on an 
estimation of when their operands will be available, so 
the conventional wakeup activity is not required. 
Additionally, the functional units are distributed across 
the different queues. 

The energy required by the proposed scheme is 
substantially lower than that required by a conventional 
issue design, even if the latter has the ability of waking-up 
only unready operands. MB_distr scheme reduces the 
energy-delay2 product by 35% and the energy-delay 
product by 18% with respect to a state-of-the-art 
approach. 
 
1. Introduction 

 
Technology and microarchitecture evolution is driving 

microprocessors towards higher clock frequencies and 
higher integration scale. These two factors translate into 
higher power density, which calls for more sophisticated 
and expensive cooling systems. Reduction of power 
dissipation in the hottest spots of the processor can be 
very beneficial not only in terms of energy reduction, but 
also for reducing cooling costs or increasing performance 
for a given thermal solution. 

The issue logic of superscalar processors is one of the 
main hotspots. Besides, this logic has a significant delay 
and is difficult to pipeline [6][19]. Overall, the design of 
low latency and low power dissipation issue logic is an 
important challenge for continuing scaling up the 
performance of superscalar processors.  

The issue logic is typically implemented using fully 
associative schemes for the wake-up process [19][8]. This 
kind of schemes requires a mechanism for checking 
which operands become ready for all the instructions in 
the issue queue every time that an instruction is selected 
for execution. Those instructions whose all operands are 
ready are considered in the selection process that follows 
the wake-up. Even though this approach results in high 
IPC rates, its latency may not be compatible with high 
clock rates. Additionally, its complexity grows drastically 
if the issue width or the issue queue size are increased. 
Large instruction windows are required for augmenting 
the opportunities to extract more ILP, which in turn 
requires wider pipelines.  

This paper proposes a new issue logic organization that 
achieves high performance and reduces its power and 
complexity. The proposed approach is based on having 
multiple instruction queues, placing the instructions in 
queues based on their dependences and estimating their 
issue time.  

The rest of the paper is organized as follows. Section 2 
reviews some related work. Section 3 presents the 
proposed scheme. Section 4 evaluates its performance. 
Section 5 summarizes the main conclusions of this work. 

 
2. Related Work 

 
Instructions are dispatched into the issue queue after 

they are fetched and decoded, where they stay until they 
are issued to the functional units. This process includes 
several key aspects that determine the issue logic 
performance, complexity and power: where the 
instructions are placed, how it is known when they are 
ready to be issued, which instructions are selected for 
issue, and which functional unit is used by each selected 
instruction.  
 
2.1. CAM Based Issue Queue Schemes 

 
Conventional issue logic schemes are based on 

CAM/RAM structures [19], which achieve high IPC but 
at the expense of dissipating significant power. Figure 1 



 

shows the structure of an issue queue entry based on the 
CAM/RAM approach. Folegnani and González [14] 
propose an issue queue design where energy consumption 
is reduced by using a dynamic resizing mechanism of the 
issue queue. They also propose to disable the wakeup for 
empty entries and ready operands. Abella and González 
[2] propose a similar scheme for resizing the issue queue 
and the register file based on observing the relation 
between the issue queue and the reorder buffer 
occupancies. 
 
 
 
 
 
 
 
 
 
 

Figure 1. Issue queue entry 
 

Buyuktosunoglu et al. [9] propose a detailed issue 
queue implementation for a similar scheme. This 
implementation is based on subbanking the issue queue 
(both CAM and RAM arrays). Based on this design, 
different approaches for turning off banks in order to 
reduce power dissipation can be implemented. In [9], the 
authors propose a simple mechanism to dynamically 
adapt the issue queue size.  

Further research has proposed different approaches to 
achieve high performance having small CAM/RAM 
arrays or putting them away from the critical path as 
described below. 

Brown et al. [6] propose a mechanism to pipeline the 
issue logic and still allowing dependent instructions to be 
issued in consecutive cycles.  

Ernst and Austin [13] propose an issue queue 
organization which has three kinds of entries: those 
without CAM cells, for instructions that are ready at 
dispatch time, those with CAM cells for only one 
operand, for instructions that have just one pending 
operand at dispatch time, and those with CAM cells for 
both operands as in a conventional issue queue. This 
reduces the power and delay of the issue logic. 

Cotofana et al. [12] propose a counter-based resource 
conflict check that significantly reduces the complexity 
and delay of the selection logic as well as its area. This 
approach allows the processor to wakeup and select 
instructions faster than with a conventional issue scheme. 

Kucuk et al. [16] propose power efficient comparators, 
zero byte encoding and bitline segmentation for the issue 
queue to make this structure less power hungry. 

Lebeck et al. [17] propose a waiting instruction buffer 
to place those instructions dependent on a load cache 

miss. Those instructions are moved from the buffer to the 
issue queue when the load cache miss is serviced. This 
mechanism reduces the issue queue requirements for 
those applications with significant load miss rates. 

Brekelbaum et al. [3] propose an issue queue design 
based on hierarchical scheduling windows. Critical 
instructions are placed in a small CAM/RAM issue queue 
whereas latency tolerant instructions are placed in a 
buffer that does not use power hungry CAM logic but it 
requires a longer latency for the wakeup operation. 

Canal and González [10][11] propose different 
schemes to issue instructions. One of them is based on 
computing the issue cycle of each instruction at dispatch 
time and issuing them in-order using the dynamically pre-
computed scheduling. Given that it is hard to compute 
precisely this information at dispatch time, a small 
CAM/RAM array is required to place those instructions 
that were not issued at the predicted cycle. These 
instructions stay in this conventional issue queue until 
they are finally issued. 

Michaud and Seznec [18] propose a two-level issue 
queue such that the small first level works as a 
conventional CAM/RAM issue queue and the second 
level stores instructions but has no wakeup capability. 
The instructions are prescheduled into the second level 
taking into account their dependences and latencies. They 
are promoted to the first level issue queue if it is expected 
that they are ready to be issued and there are free entries 
in the first level issue queue. This mechanism is shown to 
work better than dependence based ones but introduces 
some more complexity because it requires hardware 
similar to the dependence check logic of the register 
renaming, but using adders instead of comparators. This 
problem is handled by using some simplifications that 
make the prescheduling process less precise. 

Raasch et al. [20] propose a scalable issue logic design 
based on subbanking the issue queue and promoting 
instructions from bank to bank based on the expected 
number of cycles that instructions require for being ready. 
Even though the banks are small, all of them are 
implemented using the CAM/RAM structure so this 
mechanism can work at high clock rates but it still 
dissipates significant power, as the authors outline.  

Some of these mechanisms [10][11][18][20] require 
the computation of the issue cycle of all the instructions 
dispatched simultaneously in just one cycle, which may 
be too optimistic and may require complex hardware. 

 
2.2. Other Issue Queue Schemes 

 
Since CAM-based schemes dissipate significant 

power, alternative issue logic designs based on structures 
other than CAM ones have been proposed. Based on the 
observation that most of the instructions have very few 
consumers, Canal and González [10][11] propose a 
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mechanism consisting on waking-up only N dependent 
instruction for each producer. It is implemented using a 
RAM array (N-use table). Additionally, there are two 
more buffers: one of them contains ready instructions 
coming from the dispatch stage and one buffer to place 
those instructions that are not in the first N uses of one of 
their producers. This second buffer has two different 
implementations: in-order or a CAM-based out-of-order. 
A similar scheme is proposed by Huang et al. [15]. 

Palacharla et al. [19] propose an issue queue design 
based on a small number of first in first out (FIFO) 
queues. Only the instructions at the head of each FIFO are 
considered for issue. Since our proposal is partially based 
on these FIFO queues, we describe below Palacharla’s 
approach in more detail. Instructions are dispatched to the 
FIFOs with the following heuristics: 
• If there is a queue whose tail instruction produces the 

first operand of the instruction being dispatched, the 
instruction is placed in this queue. If the queue is full 
and the instruction has only one source operand then 
dispatch is stalled. 

• If there is a queue whose tail instruction produces the 
second operand of the instruction being dispatched, 
the instruction is placed in this queue. If the queue is 
full then dispatch is stalled. 

• Otherwise the instruction is placed in an empty FIFO. 
If there are not empty FIFOs then dispatch is stalled. 

These heuristics guarantee that instructions in a given 
FIFO must be executed sequentially. This mechanism 
only requires a table to store for each register which 
queue (if any) has its producer at the tail of the queue. 
This table can be implemented in two different ways: 
storing the mentioned information for each physical 
register or for each architectural register. If the former is 
chosen, the table has not to be modified under a branch 
missprediction. If the latter is chosen, the table stores 
wrong information under a branch missprediction so it 
has to be regenerated or cleared. We have experimentally 
observed that clearing the table does not have significant 
impact in performance and simplifies the hardware. 

A FIFO-based organization does not require the 
wakeup logic. Instructions at FIFO heads check if their 
operands are ready every cycle in a small table. This table 
stores just one bit per physical register indicating whether 
it is available. 

A FIFO-based issue queue organization works well for 
integer applications since, in general, this kind of 
programs has narrow dependence graphs that fit in a small 
number of FIFO buffers. Additionally, integer operations 
have short dependence chains with short latencies, so 
after being allocated to one dependence chain, a FIFO 
usually becomes empty in short, which allows another 
dependence chain to be placed in it. Since FP programs 
have wide dependence graphs and long latency 
operations, they require a large number of FIFOs. 

Detailed evaluation of this observation is provided in the 
evaluation section. 

For further details in issue queue designs, we refer the 
reader to the survey by Abella, Canal and González [1]. 

This paper presents a new issue logic organization 
designed to achieve high performance with both integer 
and FP programs. Our proposal does not require CAM 
arrays like most of the previous approaches and fully 
distributes the issue logic: queues, selection logic and 
crossbars to send instructions to the functional units, with 
small impact on performance. Our approach differs from 
previous ones in the fact that it is the first one, to our 
knowledge, that combines the benefits of considering 
dependence chains and expected issue cycles reducing 
complexity and power. 

 
3. Proposed Issue Logic Design 

 
As outlined in the previous section, we have observed 

that the FIFO based issue queue works quite well for 
integer applications but not for FP ones. This can be 
observed in the following experiments. We will refer to 
this organization as IssueFIFO_AxB_CxD where A and C 
correspond to the number of integer and FP queues 
respectively, and B and D correspond to the size of the 
integer and FP queues respectively. Details of the 
processor configuration can be found in Table 1. 

Table 1. Processor configuration 

Parameter Configuration 
Fetch, decode and 
commit width 

8 instructions 

Issue width 8 integer + 8 FP instructions 
Branch predictor Hybrid with 2K entry Gshare, 2K entry 

bimodal and 1K entry selector 
BTB 2048 entries, 4-way set associative 
L1 Icache 64K, 2-way, 32 byte/line, 1 cycle 
L1 Dcache 32K, 4-way, 32 byte/line, 2 cycle, 4 R/W ports 
L2 unified cache 512K, 4-way, 64 byte/line, 10 cycle 
Main memory 64 byte bandwidth, 100 cycles for first chunk, 

2 cycles inter-chunk 
Fetch queue 64 entries 
Reorder buffer 256 entries 
Registers 160 INT + 160 FP 
INT functional 
units 

8 ALU (1 cycle), 4 mult/div (3-cycle mult, 20-
cycle div) 

FP functional units 4 ALU (2 cycles), 4 mult/div (4-cycle mult, 
12-cycle div) 

Technology 0.10 µm 
 

In this section, the issue queue of the baseline 
processor has the same size as the reorder buffer (256 
entries). This corresponds to an unbounded issue queue, 
since the dispatch process is never stalled due to lack of 
entries in the issue queue. Smaller issue queues may be 
more cost-effective and are considered for the proposed 
scheme. 



 

The benchmarks used for this study are the whole 
Spec2000 benchmark suite [24] with the ref input data 
set. This suite consists of 12 integer and 14 FP programs. 
We have simulated 100 million of instructions for each 
benchmark after skipping the initialization part. The 
benchmarks were compiled with the Compaq/Alpha 
compiler with –O4 –non_shared flags. 

Figure 2 and Figure 3 show the IPC loss of the 
IssueFIFO scheme with respect to the baseline for the 
integer and FP programs respectively. Different 
configurations varying the number of queues and their 
sizes have been evaluated. For SpecINT2000 the integer 
queues are varied whereas different configurations of the 
FP queues are explored for SpecFP2000 benchmarks.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. IPC loss of IssueFIFO technique w.r.t. 
unbounded conventional issue queue (specINT) 

 

 
 
 
 
 
 
 
 
Figure 3. IPC loss of IssueFIFO technique w.r.t. 
unbounded conventional issue queue (specFP). 

 
It can be observed that the IPC loss of FIFO queues is 

relatively small for integer benchmarks whereas the 
complexity is reduced significantly. Increasing the 
number of FIFO queues achieves higher performance 
since the dispatch stage is stalled less frequently. On the 
other hand, large queues do not provide significant 
benefits. Our experiments show that increasing the 
number of queue entries from 8 to 16 improves 
performance by 0.1% for 8, 10 and 12 queues.  

FP benchmarks show similar trends regarding the 
number and size of the queues, but it can be seen that 
these applications lose much more performance than 

integer ones. FP benchmarks have wider DDG’s (Data 
dependence graphs) than integer ones, so more queues are 
required. Increasing the number of queues does not come 
for free since:  
a) The logic to dispatch instructions to the queues 

becomes more complex. 
b) There are more candidate instructions to be issued at 

a given cycle, so more instructions must check if 
their operands are ready. 

c) The hardware for issuing the instructions to the 
functional units is more complex. 

We can thus conclude that the IssueFIFO organization 
is suitable for integer DDG’s but not for FP ones. Below, 
we propose more appropriate approaches for FP codes. 

 
3.1. Latency Based Organization 

 
The study of the IssueFIFO organization for FP 

benchmarks revealed that the dispatch process is stalled 
very often, but most of the queues store a very small 
number of instructions. Given that most FP operations 
have long latencies, interleaving different dependence 
chains in a single queue could be an interesting approach 
to reduce complexity with minimal impact in 
performance. However, it is crucial to interleave these 
dependence chains in an appropriate way, since 
instructions of the same queue are issued in the same 
order as they are placed. Ideally, one would like to place 
instructions in a given queue in such a way that a new 
instruction can be issued every cycle. This is what the 
scheme proposed in this section tries to achieve. For this 
purpose, it is necessary to estimate the issue time of each 
instruction, which depends on its dependences and the 
latencies of the operations, among other factors. We will 
refer to this organization as LatFIFO. This organization is 
exactly the same as IssueFIFO for integer codes. 
However, for FP ones, instructions are placed in FIFO 
queues considering the expected time when they will be 
ready to be issued. The expected issue time is computed 
at dispatch stage as follows: 
IssueCycle = MAX(current_cycle + 1, 
   OpLeftCycle, OpRightCycle) 
If (inst is load) 

IssueCycle = MAX(IssueCycle,  
AllStoreAddr) 

else if (inst is store) 
AllStoreAddr = MAX(AllStoreAddr,  

IssueCycle of its address +  
AddressLatency) 

If (inst has destination register) 
DestCycle = IssueCycle +  

InstructionLatency 

 
where OpLeftCycle and OpRightCycle stand for the cycle 
when its left operand (if any) and its right operand (if any) 
will be available respectively. AllStoreAddr stands for the 
first cycle when the address of all previous store 
instructions will be known. It should be noted that load 
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and store instructions are split into two operations: one for 
computing the memory address and another for accessing 
memory. The memory access requires knowing that no 
conflict with previous stores exists, but the address 
computation does not. Store instructions update the cycle 
when the addresses of all store instructions will be 
known. AddressLatency stands for the number of cycles 
required to compute the address of a load or store 
instruction. DestCycle stands for the cycle when the 
destination operand (if any) will be available. 
InstructionLatency corresponds to the latency of the 
corresponding operation. L1 Dcache hit latency is 
assumed for loads. We experimentally checked that 
knowing the exact number of cycles for each memory 
access has no significant effect on the proposed schemes. 
We assume that the above computations can be performed 
in a single cycle, which may be an optimistic assumption. 

Each instruction is placed in that queue that is not full 
and whose last instruction has an estimated issue time at 
least one cycle earlier than the instruction being 
dispatched. If there is more than one queue that meets 
these conditions, the one whose last instruction is 
expected to be issued later is selected. If no queue meets 
these conditions, an empty queue (if any) is selected. If no 
queue can be selected the dispatch is stalled. Choosing the 
queue in this way leaves more opportunities for younger 
instructions to be dispatched without any stall. 

The performance of the LatFIFO scheme for the FP 
benchmarks is shown in Figure 4. It can be observed that 
the performance loss is much smaller than the one of the 
IssueFIFO scheme, but it is still significantly high. On 
average, the performance of LatFIFO is about 10% better 
than that of IssueFIFO. It can also be observed in Figure 
4 that increasing the size of the queues hardly improves 
performance. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4. IPC loss of LatFIFO technique w.r.t. 
unbounded conventional issue queue 

 
3.2. Mixed Approach 

 
The main reason for the loss of performance of the 

LatFIFO scheme is that instructions in a given queue 
must be issued in the same order as they are dispatched. A 

new dispatched instruction has to be always placed at the 
tail of a queue, even if it is expected to be issued in 
between two instructions placed consecutively in a given 
queue. An alternative could be using conventional 
CAM/RAM issue queues but they dissipate significantly 
much power and are much slower. In order to avoid the 
use of CAM cells but still having the flexibility of this 
kind of queues, the issue queue organization that we 
propose is based on a RAM structure similar to a register 
file. The main features of the proposed organization are 
the following: 
• Instructions do not have to be placed in order in this 

buffer. 
• Only one instruction from each queue can be selected 

for issuing, so the selection logic is quite simple. 
• Instructions do not need to know whether their 

operands are ready before they are selected, so the 
wakeup process is not necessary. 

• Dependent instructions are placed in the same queue 
as IssueFIFO scheme does. Given that each cycle 
only one instruction is selected per queue, having 
dependent instructions in the same queue reduces the 
probability of having more than one ready instruction 
in the same queue. Different independent dependence 
chains of instructions can share the same queue. 
These dependence chains will be referred to as chains 
in the rest of this paper.  

• Instructions that are considered for issue for the first 
time have priority over those that were not issued the 
first time that they were supposed to be ready. This 
heuristic avoids selecting instructions that depend on 
either loads that missed in cache or unfinished 
instructions of other queues, instead of those 
instructions whose issue has not been delayed.  

• Latencies are considered in order to know when the 
instructions will be ready for issuing, but it is done 
locally at each queue so no complex hardware is 
required. 
 

3.2.1. Implementation. There is a table that maps logical 
registers to queues. This table is similar to the one used 
by the IssueFIFO scheme, but in this case it stores the 
queue identifier and the chain identifier since each queue 
can contain different chains. Thus, each queue has its own 
set of chains, and each entry in the table contains some 
bits identifying the queue where the operand is mapped 
and some bits identifying the chain of that queue which 
last instruction produces the operand. The use of the 
chain number is justified later. At dispatch time each 
instruction accesses this table to know the mapping of its 
source operands and the queue where it will be placed is 
determined in a similar way that IssueFIFO scheme does. 
The only difference is that an instruction is placed in the 
same queue as its predecessor only if it is the last 
instruction of the chain instead of the last instruction of 

% IPC loss w.r.t. baseline

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

SPECFP

LatFIFO_16x16_8x8
LatFIFO_16x16_8x16
LatFIFO_16x16_10x8
LatFIFO_16x16_10x16
LatFIFO_16x16_12x8
LatFIFO_16x16_12x16



 

the queue. If the preferred queue is full or it is not found 
an appropriate queue, then a free chain identifier is 
assigned to the instruction. There are as many chains as 
the product of the number of queues and the number of 
chains per queue. In order to balance the number of busy 
chains per queue, the lowest free chain identifier is 
assigned. For instance, if there are 2 queues and 3 chains 
per queue, then the chains will be assigned with the 
following priority order: chain 0 from queue 0, chain 0 
from queue 1, chain 1 from queue 0, chain 1 from queue 
1, chain 2 from queue 0, and chain 2 from queue 1. When 
an instruction is dispatched to a queue, the mapping table 
is updated with both the queue and the chain number. 

Each queue has an associated selection logic that every 
cycle picks up just one instruction from those in the 
queue, and a small table for the chain latencies. This table 
stores for each chain how many cycles will take the last 
issued instruction of this chain to finish. This table is very 
small since it has as many entries as the number of chains 
per queue, and the number of bits required to encode the 
largest functional unit latency. Every cycle the entire table 
is read and written. It is written to decrease by one all the 
entries using saturated counters, except that entry 
corresponding to the chain of the instruction being issued 
(if any), that is updated with the instruction’s latency. All 
the entries are read and their information is compressed 
and broadcast to all the entries in the queue. An 
instruction in the queue needs to know if its predecessor 
in the chain has finished, or it is going to finish next 
cycle, or it will take 2 or more cycles to finish. Thus, each 
entry of the latency table is encoded into 2 bits: 00 if the 
instruction is going to finish next cycle, 01 if it has 
finished, and 11 if it will take 2 or more cycles to finish. 
Each entry in the queue selects its corresponding pair of 
bits and concatenates its age identifier to this pair of bits. 
The age identifier is a field that indicates the 
older/younger relationship among instructions in-flight. It 
can be implemented by using the reorder buffer position 
plus one extra bit concatenated on the left that is reset 
every time that the first position of the reorder buffer is 
assigned. Combining the bits in this way allows the 
selection logic to select the oldest instruction among those 
with higher priority according to the criteria described 
above using the same type of hardware as the one used by 
the baseline scheme. This mechanism is illustrated with 
an example in Figure 5.  

Even if the selection hardware is not trivial, it is much 
simpler than the one required by a conventional issue 
queue since it has to select one instruction in each small 
issue queue instead of the N oldest ready instructions 
among the whole issue queue. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Example of selection 
 

In this example instruction i+1 is selected for issuing 
the next cycle since it is the oldest one from those with 
higher priority (those belonging to chains 1 and 2). The 
selection logic just picks up the instruction with smaller 
identifier. This example shows that instructions belonging 
to the same chain have the same most significant pair of 
bits, so the oldest one is the one with higher priority.  

This scheme will be referred to as MixBUFF in the rest 
of this paper. This scheme uses buffers instead of FIFO 
structures for the FP queues and both dependence and 
latency criteria are considered. Its performance has been 
evaluated assuming that unbounded chains per queue are 
allowed. As Figure 6 shows, the performance of this 
scheme with only 8 queues of 16 entries each is just 
around 5% lower than that of an unbounded (256 entries) 
conventional issue queue. MixBUFF’s performance is 
much better than that of IssueFIFO and LatFIFO 
schemes. For instance, with 8 FP queues of 16 entries 
each, the performance loss of MixBUFF is 5.2% whereas 
IssueFIFO and LatFIFO lose 24.8% and 15.2% 
respectively for the same configuration. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. IPC loss of MixBUFF technique w.r.t. 
unbounded conventional issue queue 
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It can be also observed that for MixBUFF, increasing 
the size of the buffers results in more benefits than 
increasing the number of buffers. Since this mechanism 
distributes quite effectively the instructions that are ready 
at a given cycle across all the queues, increasing the 
number of queues does not provide significant 
improvements. On the other hand, placing multiple chains 
in a given queue increases its occupancy, so larger queues 
reduce the number of dispatch stalls.  

 
3.3. Other Observations 

 
Another source of complexity of conventional issue 

schemes lies on the interconnects that are required to 
issue an instruction from the issue queue to any functional 
unit. The above schemes have multiple issue queues, so 
functional units can be distributed across these FIFO 
queues or buffers with small impact on performance, and 
reducing significantly the complexity.   

In order to take advantage of this, the proposed 
MixBUFF scheme has the functional units distributed 
across the different queues. The same distribution scheme 
is assumed for IssueFIFO, which is evaluated for 
comparison purposes. For both schemes the following 
configuration has been assumed: 
• 8 integer FIFO queues of 8 entries each. 
• 8 FP queues (buffers for MixBUFF and FIFO queues 

for IssueFIFO) of 16 entries each. For MixBUFF a 
maximum of 8 chains per queue has been assumed. 

• 1 integer ALU per integer queue. 
• 1 integer mult/div unit per pair of integer queues. 
• 1 FP add and 1 FP mult/div per pair of FP queues. 

Higher performance could be achieved from increasing 
the number of queues (both integer and FP), but doing so 
would increase both power dissipation and complexity.  

 
4. Evaluation 

 
In this section we present performance and power 

results for the proposed MixBUFF scheme, and it is 
compared with the IssueFIFO scheme. 

 
4.1. Experimental Framework 

 
Power and performance results are derived from 

CACTI 3.0 [21], which is a timing, power and area model 
for cache memories, and an enhanced version of Wattch 
[5], which is an architecture-level power and performance 
simulator based on SimpleScalar [7]. The main 
enhancements are the separation of the reorder buffer and 
the issue queue, and modeling ports for the register files. 

The processor configuration and evaluated benchmarks 
are those described in section 3. The only difference is the 
issue queue configuration assumed for the baseline. In 
order to do a reasonable comparison, the size of the issue 

queue assumed for the baseline scheme is not unbounded. 
The baseline configuration has two issue queues: one for 
integer instructions and another for FP ones. They store 
instructions out-of-order, like in P6 family (Pentium Pro, 
Pentium II and Pentium III) and Pentium IV [22], and any 
instruction in the queue can be issued if its operands are 
ready and the required resources are available.  

 
4.2. Configurations Evaluated 

 
Based on the study presented in section 3, the 

configurations that have been chosen are 
MixBUFF_8x8_8x16 and IssueFIFO_8x8_8x16, both 
with distributed functional units. For the sake of 
readability they are referred to as MB_distr and IF_distr 
respectively. They have been compared in terms of power 
and performance with a baseline with 64 entries for the 
integer issue queue and 64 entries for the FP issue queue. 
It is referred to as IQ_64_64 in the rest of this paper. A 
baseline with the same number of issue queue entries as 
MB_distr and IF_distr (64 and 128 entries for integer and 
FP queues respectively) has not been considered because 
it implies higher power dissipation and more complexity 
than the chosen baseline, and it achieves only 1.0% extra 
IPC with respect to the chosen baseline. 

It has been assumed that the baseline consumes energy 
for waking-up only those CAM cells corresponding to 
unready operands, as proposed in [14] in order to make it 
more power efficient. A multiple-banked implementation 
of the issue queue has also been assumed: each queue 
consists of 8 banks with 8 entries each. Additionally, the 
selection logic does not dissipate power if the queue is 
empty for both the IQ_64_64 and MB_distr schemes 
(IF_distr does not have selection logic). 

 
4.3. Performance 

 
Figure 7 shows the performance for integer 

applications. As expected, both MB_distr and IF_distr 
schemes achieve the same performance, except for eon 
since it has a significant number of FP instructions. These 
schemes lose on average 7.7% IPC w.r.t. the baseline, 
which is a reasonable loss since the complexity of both 
schemes is quite low for integer queues. 
 

 
 
 
 
 
 
 
 
 
 

Figure 7. Performance for the integer benchmarks 
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It can be observed in Figure 8 that IF_distr loses 
significant performance (26.0%) for FP applications, 
whereas MB_distr only loses 7.6% IPC w.r.t. the baseline. 
MB_distr allows several chains to share the same queue 
in an efficient way, so dispatch stage is stalled fewer 
times than it is when the IF_distr scheme is used. It can 
be also seen that MB_distr outperforms IF_distr for all FP 
benchmarks. 

 
 
 
 
 
 
 
 
 
 

Figure 8. Performance for the FP benchmarks 
 

4.4. Energy Consumption 
 
This section analyzes where the energy is consumed 

for each scheme. Figure 9 shows the energy breakdown 
for the baseline (IQ_64_64). Even though only unready 
operands are woken up, and a multiple-banked 
implementation is assumed, the wakeup dissipates most 
of the power. Reading and writing instructions from/into 
the issue queue (buff) as well as the selection logic 
(select) dissipate significant power. The logic to drive 
instructions to the functional units is significant only for 
integer ALUs  (MuxIntALU). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Energy breakdown for IQ_64_64 scheme 
 

Figure 10 and Figure 11 show the energy breakdown 
for IF_distr and MB_distr schemes. It can be observed 
that integer applications consume 25-30% of the energy 
in the table that stores the corresponding queue for each 
logical register (Qrename). Reading and writing 
instructions from/into the FIFO queues requires around 
35% of the energy (fifo). Similar percentage is consumed 

for reading and writing the information regarding which 
registers are ready (regs_ready). Since the functional 
units have been distributed across the queues, the logic to 
drive the instructions to the functional units dissipates 
negligible power. 

FP benchmarks show similar trends than integer ones 
for IF_distr, whereas MB_distr has other sources of 
power dissipation. MB_distr scheme places FP 
instructions into buffers (buff) instead of FIFO queues 
(fifo). Some energy is spent selecting instructions (select) 
and managing the information concerning chains’ 
latencies (chains). Finally, the energy required to drive 
instructions to the functional units and to save the last 
selected instruction (reg) is negligible. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Energy breakdown for IF_distr scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Energy breakdown for MB_distr scheme 
 

4.5. Power Efficiency 
 
Different metrics related with power-efficiency have 

been proposed to compare different schemes [4]. 
Depending on what the constraints are, different metrics 
should be used. Power is adequate when the heat is the 
main constraint, whereas energy is used for comparing 
schemes where the battery lifetime is the strongest 
constraint. Other metrics like energy-delay and energy-
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delay2 are more appropriate when execution time is also 
important, as it usually is. 

Different systems based on a superscalar processor can 
have different limitations. For instance, laptops have 
limitations in their cooling systems, so heat is a constraint 
(strongly related to power). Additionally, battery lifetime 
(energy) is also a constraint that must be considered in 
laptop’s processor design. If the processor is to be used in 
a desktop or mainframe, then execution time is a 
significant factor (energy-delay). For the highest 
performance server-class machines, it may be appropriate 
to weight the delay part even more (energy-delay2). Thus, 
we have decided to compare the different schemes using 
all the metrics described above. The comparison has been 
normalized to the baseline configuration. 

Figure 12 and Figure 13 show the comparison in terms 
of power and energy respectively for the issue queue. It 
can be observed that both MB_distr and IF_distr dissipate 
much less power and consume much less energy than 
IQ_64_64. Their power and energy requirements are the 
same for integer applications, but for FP ones MB_distr 
spends a bit more energy. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Normalized power dissipation 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Normalized energy consumption 

 
Figure 14 and Figure 15 compare the different schemes 

using the energy-delay and energy-delay2 metrics for the 
whole processor considering that the issue queue 
contribution to the total chip power is 23% [23]. It can be 
observed in Figure 14 that MB_distr outperforms both 
IF_distr and the baseline in energy-delay product for FP 
applications. The poor performance of IF_distr is 

basically due to its significant loss in IPC. Figure 15 
shows that MB_distr significantly outperforms IF_distr 
and achieves practically the same performance as the 
baseline in terms of energy-delay2.  

It must be taken into account that the reduced 
complexity of the issue queue for both MB_distr and 
IF_distr schemes may enable a reduction of the cycle 
time, which may significantly reduce the execution time 
for these two schemes and thus, significantly improve 
their energy-delay and energy-delay2 metrics with respect 
to the baseline. Measuring the effect of a shorter cycle 
time requires a detailed circuit analysis of the whole 
processor, which is out of the scope of this paper.  

We conclude that MB_distr results in the best tradeoff 
among performance, energy and power. 

 
 
 
 
 
 

 

 
 
 
Figure 14. Normalized energy-delay product 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Normalized energy-delay2 product 

 
5. Conclusions 

 
This paper presents a low-complexity FP issue queue 

organization (MB_distr) that achieves high performance 
with small energy requirements. The MB_distr scheme is 
based on dispatching instructions into a set of multiple 
queues depending on their data dependences at dispatch 
time. Selection logic is based on estimating the 
availability time of each operand, instead of the complex 
and power-hungry conventional wakeup logic. 
Additionally, the proposed issue logic organization 
distributes the functional units across the different queues. 
Thus, the complexity of the crossbar from the issue queue 
to the functional units is significantly reduced.  
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The energy required by the proposed MB_distr scheme 
is substantially lower than the energy required by a 
baseline conventional issue queue, even if the baseline 
has the capability of spending energy for waking-up only 
unready operands. This baseline scheme has a much 
longer delay than MB_distr. 

It has been shown that MB_distr achieves similar 
energy-delay2 product than the baseline and reduces the 
product by 35% with respect to the IF_distr scheme. If 
the energy-delay metric is used, then the reductions are 
5% with respect to the baseline and 18% with respect to 
the IF_distr scheme. The IPC loss of MB_distr scheme 
for FP applications with respect to the high-complexity 
baseline is only 7.6%, whereas IF_distr loses 26%. 
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