

Low-Complexity Distributed Issue Queue

Jaume Abella* and Antonio González*+

* Computer Architecture Department
Universitat Politècnica de Catalunya

Barcelona (Spain)

 + Intel Barcelona Research Center
Intel Labs, Universitat Politècnica de Catalunya

Barcelona (Spain)

jabella@ac.upc.es, antonio@ac.upc.es

Abstract

As technology evolves, power density significantly
increases and cooling systems become more complex and
expensive. The issue logic is one of the processor hotspots
and, at the same time, its latency is crucial for the
processor performance.

This paper presents a low-complexity FP issue logic
(MB_distr) that achieves high performance with small
energy requirements. The MB_distr scheme is based on
classifying instructions and dispatching them into a set of
queues depending on their data dependences. These
instructions are selected for issuing based on an
estimation of when their operands will be available, so
the conventional wakeup activity is not required.
Additionally, the functional units are distributed across
the different queues.

The energy required by the proposed scheme is
substantially lower than that required by a conventional
issue design, even if the latter has the ability of waking-up
only unready operands. MB_distr scheme reduces the
energy-delay2 product by 35% and the energy-delay
product by 18% with respect to a state-of-the-art
approach.

1. Introduction

Technology and microarchitecture evolution is driving

microprocessors towards higher clock frequencies and
higher integration scale. These two factors translate into
higher power density, which calls for more sophisticated
and expensive cooling systems. Reduction of power
dissipation in the hottest spots of the processor can be
very beneficial not only in terms of energy reduction, but
also for reducing cooling costs or increasing performance
for a given thermal solution.

The issue logic of superscalar processors is one of the
main hotspots. Besides, this logic has a significant delay
and is difficult to pipeline [6][19]. Overall, the design of
low latency and low power dissipation issue logic is an
important challenge for continuing scaling up the
performance of superscalar processors.

The issue logic is typically implemented using fully
associative schemes for the wake-up process [19][8]. This
kind of schemes requires a mechanism for checking
which operands become ready for all the instructions in
the issue queue every time that an instruction is selected
for execution. Those instructions whose all operands are
ready are considered in the selection process that follows
the wake-up. Even though this approach results in high
IPC rates, its latency may not be compatible with high
clock rates. Additionally, its complexity grows drastically
if the issue width or the issue queue size are increased.
Large instruction windows are required for augmenting
the opportunities to extract more ILP, which in turn
requires wider pipelines.

This paper proposes a new issue logic organization that
achieves high performance and reduces its power and
complexity. The proposed approach is based on having
multiple instruction queues, placing the instructions in
queues based on their dependences and estimating their
issue time.

The rest of the paper is organized as follows. Section 2
reviews some related work. Section 3 presents the
proposed scheme. Section 4 evaluates its performance.
Section 5 summarizes the main conclusions of this work.

2. Related Work

Instructions are dispatched into the issue queue after

they are fetched and decoded, where they stay until they
are issued to the functional units. This process includes
several key aspects that determine the issue logic
performance, complexity and power: where the
instructions are placed, how it is known when they are
ready to be issued, which instructions are selected for
issue, and which functional unit is used by each selected
instruction.

2.1. CAM Based Issue Queue Schemes

Conventional issue logic schemes are based on

CAM/RAM structures [19], which achieve high IPC but
at the expense of dissipating significant power. Figure 1

shows the structure of an issue queue entry based on the
CAM/RAM approach. Folegnani and González [14]
propose an issue queue design where energy consumption
is reduced by using a dynamic resizing mechanism of the
issue queue. They also propose to disable the wakeup for
empty entries and ready operands. Abella and González
[2] propose a similar scheme for resizing the issue queue
and the register file based on observing the relation
between the issue queue and the reorder buffer
occupancies.

Figure 1. Issue queue entry

Buyuktosunoglu et al. [9] propose a detailed issue
queue implementation for a similar scheme. This
implementation is based on subbanking the issue queue
(both CAM and RAM arrays). Based on this design,
different approaches for turning off banks in order to
reduce power dissipation can be implemented. In [9], the
authors propose a simple mechanism to dynamically
adapt the issue queue size.

Further research has proposed different approaches to
achieve high performance having small CAM/RAM
arrays or putting them away from the critical path as
described below.

Brown et al. [6] propose a mechanism to pipeline the
issue logic and still allowing dependent instructions to be
issued in consecutive cycles.

Ernst and Austin [13] propose an issue queue
organization which has three kinds of entries: those
without CAM cells, for instructions that are ready at
dispatch time, those with CAM cells for only one
operand, for instructions that have just one pending
operand at dispatch time, and those with CAM cells for
both operands as in a conventional issue queue. This
reduces the power and delay of the issue logic.

Cotofana et al. [12] propose a counter-based resource
conflict check that significantly reduces the complexity
and delay of the selection logic as well as its area. This
approach allows the processor to wakeup and select
instructions faster than with a conventional issue scheme.

Kucuk et al. [16] propose power efficient comparators,
zero byte encoding and bitline segmentation for the issue
queue to make this structure less power hungry.

Lebeck et al. [17] propose a waiting instruction buffer
to place those instructions dependent on a load cache

miss. Those instructions are moved from the buffer to the
issue queue when the load cache miss is serviced. This
mechanism reduces the issue queue requirements for
those applications with significant load miss rates.

Brekelbaum et al. [3] propose an issue queue design
based on hierarchical scheduling windows. Critical
instructions are placed in a small CAM/RAM issue queue
whereas latency tolerant instructions are placed in a
buffer that does not use power hungry CAM logic but it
requires a longer latency for the wakeup operation.

Canal and González [10][11] propose different
schemes to issue instructions. One of them is based on
computing the issue cycle of each instruction at dispatch
time and issuing them in-order using the dynamically pre-
computed scheduling. Given that it is hard to compute
precisely this information at dispatch time, a small
CAM/RAM array is required to place those instructions
that were not issued at the predicted cycle. These
instructions stay in this conventional issue queue until
they are finally issued.

Michaud and Seznec [18] propose a two-level issue
queue such that the small first level works as a
conventional CAM/RAM issue queue and the second
level stores instructions but has no wakeup capability.
The instructions are prescheduled into the second level
taking into account their dependences and latencies. They
are promoted to the first level issue queue if it is expected
that they are ready to be issued and there are free entries
in the first level issue queue. This mechanism is shown to
work better than dependence based ones but introduces
some more complexity because it requires hardware
similar to the dependence check logic of the register
renaming, but using adders instead of comparators. This
problem is handled by using some simplifications that
make the prescheduling process less precise.

Raasch et al. [20] propose a scalable issue logic design
based on subbanking the issue queue and promoting
instructions from bank to bank based on the expected
number of cycles that instructions require for being ready.
Even though the banks are small, all of them are
implemented using the CAM/RAM structure so this
mechanism can work at high clock rates but it still
dissipates significant power, as the authors outline.

Some of these mechanisms [10][11][18][20] require
the computation of the issue cycle of all the instructions
dispatched simultaneously in just one cycle, which may
be too optimistic and may require complex hardware.

2.2. Other Issue Queue Schemes

Since CAM-based schemes dissipate significant

power, alternative issue logic designs based on structures
other than CAM ones have been proposed. Based on the
observation that most of the instructions have very few
consumers, Canal and González [10][11] propose a

OR

RDY L OPR TAG L OPR TAG R RDY R

OR
=

=

=

=

TAG 1 TAG IW

mechanism consisting on waking-up only N dependent
instruction for each producer. It is implemented using a
RAM array (N-use table). Additionally, there are two
more buffers: one of them contains ready instructions
coming from the dispatch stage and one buffer to place
those instructions that are not in the first N uses of one of
their producers. This second buffer has two different
implementations: in-order or a CAM-based out-of-order.
A similar scheme is proposed by Huang et al. [15].

Palacharla et al. [19] propose an issue queue design
based on a small number of first in first out (FIFO)
queues. Only the instructions at the head of each FIFO are
considered for issue. Since our proposal is partially based
on these FIFO queues, we describe below Palacharla’s
approach in more detail. Instructions are dispatched to the
FIFOs with the following heuristics:
• If there is a queue whose tail instruction produces the

first operand of the instruction being dispatched, the
instruction is placed in this queue. If the queue is full
and the instruction has only one source operand then
dispatch is stalled.

• If there is a queue whose tail instruction produces the
second operand of the instruction being dispatched,
the instruction is placed in this queue. If the queue is
full then dispatch is stalled.

• Otherwise the instruction is placed in an empty FIFO.
If there are not empty FIFOs then dispatch is stalled.

These heuristics guarantee that instructions in a given
FIFO must be executed sequentially. This mechanism
only requires a table to store for each register which
queue (if any) has its producer at the tail of the queue.
This table can be implemented in two different ways:
storing the mentioned information for each physical
register or for each architectural register. If the former is
chosen, the table has not to be modified under a branch
missprediction. If the latter is chosen, the table stores
wrong information under a branch missprediction so it
has to be regenerated or cleared. We have experimentally
observed that clearing the table does not have significant
impact in performance and simplifies the hardware.

A FIFO-based organization does not require the
wakeup logic. Instructions at FIFO heads check if their
operands are ready every cycle in a small table. This table
stores just one bit per physical register indicating whether
it is available.

A FIFO-based issue queue organization works well for
integer applications since, in general, this kind of
programs has narrow dependence graphs that fit in a small
number of FIFO buffers. Additionally, integer operations
have short dependence chains with short latencies, so
after being allocated to one dependence chain, a FIFO
usually becomes empty in short, which allows another
dependence chain to be placed in it. Since FP programs
have wide dependence graphs and long latency
operations, they require a large number of FIFOs.

Detailed evaluation of this observation is provided in the
evaluation section.

For further details in issue queue designs, we refer the
reader to the survey by Abella, Canal and González [1].

This paper presents a new issue logic organization
designed to achieve high performance with both integer
and FP programs. Our proposal does not require CAM
arrays like most of the previous approaches and fully
distributes the issue logic: queues, selection logic and
crossbars to send instructions to the functional units, with
small impact on performance. Our approach differs from
previous ones in the fact that it is the first one, to our
knowledge, that combines the benefits of considering
dependence chains and expected issue cycles reducing
complexity and power.

3. Proposed Issue Logic Design

As outlined in the previous section, we have observed

that the FIFO based issue queue works quite well for
integer applications but not for FP ones. This can be
observed in the following experiments. We will refer to
this organization as IssueFIFO_AxB_CxD where A and C
correspond to the number of integer and FP queues
respectively, and B and D correspond to the size of the
integer and FP queues respectively. Details of the
processor configuration can be found in Table 1.

Table 1. Processor configuration

Parameter Configuration
Fetch, decode and
commit width

8 instructions

Issue width 8 integer + 8 FP instructions
Branch predictor Hybrid with 2K entry Gshare, 2K entry

bimodal and 1K entry selector
BTB 2048 entries, 4-way set associative
L1 Icache 64K, 2-way, 32 byte/line, 1 cycle
L1 Dcache 32K, 4-way, 32 byte/line, 2 cycle, 4 R/W ports
L2 unified cache 512K, 4-way, 64 byte/line, 10 cycle
Main memory 64 byte bandwidth, 100 cycles for first chunk,

2 cycles inter-chunk
Fetch queue 64 entries
Reorder buffer 256 entries
Registers 160 INT + 160 FP
INT functional
units

8 ALU (1 cycle), 4 mult/div (3-cycle mult, 20-
cycle div)

FP functional units 4 ALU (2 cycles), 4 mult/div (4-cycle mult,
12-cycle div)

Technology 0.10 µm

In this section, the issue queue of the baseline
processor has the same size as the reorder buffer (256
entries). This corresponds to an unbounded issue queue,
since the dispatch process is never stalled due to lack of
entries in the issue queue. Smaller issue queues may be
more cost-effective and are considered for the proposed
scheme.

The benchmarks used for this study are the whole
Spec2000 benchmark suite [24] with the ref input data
set. This suite consists of 12 integer and 14 FP programs.
We have simulated 100 million of instructions for each
benchmark after skipping the initialization part. The
benchmarks were compiled with the Compaq/Alpha
compiler with –O4 –non_shared flags.

Figure 2 and Figure 3 show the IPC loss of the
IssueFIFO scheme with respect to the baseline for the
integer and FP programs respectively. Different
configurations varying the number of queues and their
sizes have been evaluated. For SpecINT2000 the integer
queues are varied whereas different configurations of the
FP queues are explored for SpecFP2000 benchmarks.

Figure 2. IPC loss of IssueFIFO technique w.r.t.
unbounded conventional issue queue (specINT)

Figure 3. IPC loss of IssueFIFO technique w.r.t.
unbounded conventional issue queue (specFP).

It can be observed that the IPC loss of FIFO queues is

relatively small for integer benchmarks whereas the
complexity is reduced significantly. Increasing the
number of FIFO queues achieves higher performance
since the dispatch stage is stalled less frequently. On the
other hand, large queues do not provide significant
benefits. Our experiments show that increasing the
number of queue entries from 8 to 16 improves
performance by 0.1% for 8, 10 and 12 queues.

FP benchmarks show similar trends regarding the
number and size of the queues, but it can be seen that
these applications lose much more performance than

integer ones. FP benchmarks have wider DDG’s (Data
dependence graphs) than integer ones, so more queues are
required. Increasing the number of queues does not come
for free since:
a) The logic to dispatch instructions to the queues

becomes more complex.
b) There are more candidate instructions to be issued at

a given cycle, so more instructions must check if
their operands are ready.

c) The hardware for issuing the instructions to the
functional units is more complex.

We can thus conclude that the IssueFIFO organization
is suitable for integer DDG’s but not for FP ones. Below,
we propose more appropriate approaches for FP codes.

3.1. Latency Based Organization

The study of the IssueFIFO organization for FP

benchmarks revealed that the dispatch process is stalled
very often, but most of the queues store a very small
number of instructions. Given that most FP operations
have long latencies, interleaving different dependence
chains in a single queue could be an interesting approach
to reduce complexity with minimal impact in
performance. However, it is crucial to interleave these
dependence chains in an appropriate way, since
instructions of the same queue are issued in the same
order as they are placed. Ideally, one would like to place
instructions in a given queue in such a way that a new
instruction can be issued every cycle. This is what the
scheme proposed in this section tries to achieve. For this
purpose, it is necessary to estimate the issue time of each
instruction, which depends on its dependences and the
latencies of the operations, among other factors. We will
refer to this organization as LatFIFO. This organization is
exactly the same as IssueFIFO for integer codes.
However, for FP ones, instructions are placed in FIFO
queues considering the expected time when they will be
ready to be issued. The expected issue time is computed
at dispatch stage as follows:
IssueCycle = MAX(current_cycle + 1,
 OpLeftCycle, OpRightCycle)
If (inst is load)

IssueCycle = MAX(IssueCycle,
AllStoreAddr)

else if (inst is store)
AllStoreAddr = MAX(AllStoreAddr,

IssueCycle of its address +
AddressLatency)

If (inst has destination register)
DestCycle = IssueCycle +

InstructionLatency

where OpLeftCycle and OpRightCycle stand for the cycle
when its left operand (if any) and its right operand (if any)
will be available respectively. AllStoreAddr stands for the
first cycle when the address of all previous store
instructions will be known. It should be noted that load

% IPC loss w.r.t. baseline

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

SPECINT

IssueFIFO_8x8_16x16
IssueFIFO_8x16_16x16
IssueFIFO_10x8_16x16
IssueFIFO_10x16_16x16
IssueFIFO_12x8_16x16
IssueFIFO_12x16_16x16

% IPC loss w.r.t. baseline

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

SPECFP

IssueFIFO_16x16_8x8
IssueFIFO_16x16_8x16
IssueFIFO_16x16_10x8
IssueFIFO_16x16_10x16
IssueFIFO_16x16_12x8
IssueFIFO_16x16_12x16

and store instructions are split into two operations: one for
computing the memory address and another for accessing
memory. The memory access requires knowing that no
conflict with previous stores exists, but the address
computation does not. Store instructions update the cycle
when the addresses of all store instructions will be
known. AddressLatency stands for the number of cycles
required to compute the address of a load or store
instruction. DestCycle stands for the cycle when the
destination operand (if any) will be available.
InstructionLatency corresponds to the latency of the
corresponding operation. L1 Dcache hit latency is
assumed for loads. We experimentally checked that
knowing the exact number of cycles for each memory
access has no significant effect on the proposed schemes.
We assume that the above computations can be performed
in a single cycle, which may be an optimistic assumption.

Each instruction is placed in that queue that is not full
and whose last instruction has an estimated issue time at
least one cycle earlier than the instruction being
dispatched. If there is more than one queue that meets
these conditions, the one whose last instruction is
expected to be issued later is selected. If no queue meets
these conditions, an empty queue (if any) is selected. If no
queue can be selected the dispatch is stalled. Choosing the
queue in this way leaves more opportunities for younger
instructions to be dispatched without any stall.

The performance of the LatFIFO scheme for the FP
benchmarks is shown in Figure 4. It can be observed that
the performance loss is much smaller than the one of the
IssueFIFO scheme, but it is still significantly high. On
average, the performance of LatFIFO is about 10% better
than that of IssueFIFO. It can also be observed in Figure
4 that increasing the size of the queues hardly improves
performance.

Figure 4. IPC loss of LatFIFO technique w.r.t.
unbounded conventional issue queue

3.2. Mixed Approach

The main reason for the loss of performance of the

LatFIFO scheme is that instructions in a given queue
must be issued in the same order as they are dispatched. A

new dispatched instruction has to be always placed at the
tail of a queue, even if it is expected to be issued in
between two instructions placed consecutively in a given
queue. An alternative could be using conventional
CAM/RAM issue queues but they dissipate significantly
much power and are much slower. In order to avoid the
use of CAM cells but still having the flexibility of this
kind of queues, the issue queue organization that we
propose is based on a RAM structure similar to a register
file. The main features of the proposed organization are
the following:
• Instructions do not have to be placed in order in this

buffer.
• Only one instruction from each queue can be selected

for issuing, so the selection logic is quite simple.
• Instructions do not need to know whether their

operands are ready before they are selected, so the
wakeup process is not necessary.

• Dependent instructions are placed in the same queue
as IssueFIFO scheme does. Given that each cycle
only one instruction is selected per queue, having
dependent instructions in the same queue reduces the
probability of having more than one ready instruction
in the same queue. Different independent dependence
chains of instructions can share the same queue.
These dependence chains will be referred to as chains
in the rest of this paper.

• Instructions that are considered for issue for the first
time have priority over those that were not issued the
first time that they were supposed to be ready. This
heuristic avoids selecting instructions that depend on
either loads that missed in cache or unfinished
instructions of other queues, instead of those
instructions whose issue has not been delayed.

• Latencies are considered in order to know when the
instructions will be ready for issuing, but it is done
locally at each queue so no complex hardware is
required.

3.2.1. Implementation. There is a table that maps logical
registers to queues. This table is similar to the one used
by the IssueFIFO scheme, but in this case it stores the
queue identifier and the chain identifier since each queue
can contain different chains. Thus, each queue has its own
set of chains, and each entry in the table contains some
bits identifying the queue where the operand is mapped
and some bits identifying the chain of that queue which
last instruction produces the operand. The use of the
chain number is justified later. At dispatch time each
instruction accesses this table to know the mapping of its
source operands and the queue where it will be placed is
determined in a similar way that IssueFIFO scheme does.
The only difference is that an instruction is placed in the
same queue as its predecessor only if it is the last
instruction of the chain instead of the last instruction of

% IPC loss w.r.t. baseline

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

SPECFP

LatFIFO_16x16_8x8
LatFIFO_16x16_8x16
LatFIFO_16x16_10x8
LatFIFO_16x16_10x16
LatFIFO_16x16_12x8
LatFIFO_16x16_12x16

the queue. If the preferred queue is full or it is not found
an appropriate queue, then a free chain identifier is
assigned to the instruction. There are as many chains as
the product of the number of queues and the number of
chains per queue. In order to balance the number of busy
chains per queue, the lowest free chain identifier is
assigned. For instance, if there are 2 queues and 3 chains
per queue, then the chains will be assigned with the
following priority order: chain 0 from queue 0, chain 0
from queue 1, chain 1 from queue 0, chain 1 from queue
1, chain 2 from queue 0, and chain 2 from queue 1. When
an instruction is dispatched to a queue, the mapping table
is updated with both the queue and the chain number.

Each queue has an associated selection logic that every
cycle picks up just one instruction from those in the
queue, and a small table for the chain latencies. This table
stores for each chain how many cycles will take the last
issued instruction of this chain to finish. This table is very
small since it has as many entries as the number of chains
per queue, and the number of bits required to encode the
largest functional unit latency. Every cycle the entire table
is read and written. It is written to decrease by one all the
entries using saturated counters, except that entry
corresponding to the chain of the instruction being issued
(if any), that is updated with the instruction’s latency. All
the entries are read and their information is compressed
and broadcast to all the entries in the queue. An
instruction in the queue needs to know if its predecessor
in the chain has finished, or it is going to finish next
cycle, or it will take 2 or more cycles to finish. Thus, each
entry of the latency table is encoded into 2 bits: 00 if the
instruction is going to finish next cycle, 01 if it has
finished, and 11 if it will take 2 or more cycles to finish.
Each entry in the queue selects its corresponding pair of
bits and concatenates its age identifier to this pair of bits.
The age identifier is a field that indicates the
older/younger relationship among instructions in-flight. It
can be implemented by using the reorder buffer position
plus one extra bit concatenated on the left that is reset
every time that the first position of the reorder buffer is
assigned. Combining the bits in this way allows the
selection logic to select the oldest instruction among those
with higher priority according to the criteria described
above using the same type of hardware as the one used by
the baseline scheme. This mechanism is illustrated with
an example in Figure 5.

Even if the selection hardware is not trivial, it is much
simpler than the one required by a conventional issue
queue since it has to select one instruction in each small
issue queue instead of the N oldest ready instructions
among the whole issue queue.

Figure 5. Example of selection

In this example instruction i+1 is selected for issuing
the next cycle since it is the oldest one from those with
higher priority (those belonging to chains 1 and 2). The
selection logic just picks up the instruction with smaller
identifier. This example shows that instructions belonging
to the same chain have the same most significant pair of
bits, so the oldest one is the one with higher priority.

This scheme will be referred to as MixBUFF in the rest
of this paper. This scheme uses buffers instead of FIFO
structures for the FP queues and both dependence and
latency criteria are considered. Its performance has been
evaluated assuming that unbounded chains per queue are
allowed. As Figure 6 shows, the performance of this
scheme with only 8 queues of 16 entries each is just
around 5% lower than that of an unbounded (256 entries)
conventional issue queue. MixBUFF’s performance is
much better than that of IssueFIFO and LatFIFO
schemes. For instance, with 8 FP queues of 16 entries
each, the performance loss of MixBUFF is 5.2% whereas
IssueFIFO and LatFIFO lose 24.8% and 15.2%
respectively for the same configuration.

Figure 6. IPC loss of MixBUFF technique w.r.t.
unbounded conventional issue queue

% IPC loss w.r.t. baseline

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

SPECFP

MixBUFF_16x16_8x8
MixBUFF_16x16_8x16
MixBUFF_16x16_10x8
MixBUFF_16x16_10x16
MixBUFF_16x16_12x8
MixBUFF_16x16_12x16

i+30 1
i+41 1
i+52 1

3
4

i5 0
i+16 0
i+27 0

extra bit
Reorder buffer

tail

head

0 0
1 1
1 2
4 3

chain
Cycles chains

cycles
01
00
00
11

i (0 101) 0
i+1 (0 110) 1
i+4 (1 001) 2
i+5 (1 010) 3
i+2 (0 111) 0

i+3 (1 000) 2

chain
Issue queue

01 0 101
00 0 110
00 1 001
11 1 010
01 0 111

00 1 000

S
E
L
E
C
T

00 0 110

age identifiers
compressed
latency info.

It can be also observed that for MixBUFF, increasing
the size of the buffers results in more benefits than
increasing the number of buffers. Since this mechanism
distributes quite effectively the instructions that are ready
at a given cycle across all the queues, increasing the
number of queues does not provide significant
improvements. On the other hand, placing multiple chains
in a given queue increases its occupancy, so larger queues
reduce the number of dispatch stalls.

3.3. Other Observations

Another source of complexity of conventional issue

schemes lies on the interconnects that are required to
issue an instruction from the issue queue to any functional
unit. The above schemes have multiple issue queues, so
functional units can be distributed across these FIFO
queues or buffers with small impact on performance, and
reducing significantly the complexity.

In order to take advantage of this, the proposed
MixBUFF scheme has the functional units distributed
across the different queues. The same distribution scheme
is assumed for IssueFIFO, which is evaluated for
comparison purposes. For both schemes the following
configuration has been assumed:
• 8 integer FIFO queues of 8 entries each.
• 8 FP queues (buffers for MixBUFF and FIFO queues

for IssueFIFO) of 16 entries each. For MixBUFF a
maximum of 8 chains per queue has been assumed.

• 1 integer ALU per integer queue.
• 1 integer mult/div unit per pair of integer queues.
• 1 FP add and 1 FP mult/div per pair of FP queues.

Higher performance could be achieved from increasing
the number of queues (both integer and FP), but doing so
would increase both power dissipation and complexity.

4. Evaluation

In this section we present performance and power

results for the proposed MixBUFF scheme, and it is
compared with the IssueFIFO scheme.

4.1. Experimental Framework

Power and performance results are derived from

CACTI 3.0 [21], which is a timing, power and area model
for cache memories, and an enhanced version of Wattch
[5], which is an architecture-level power and performance
simulator based on SimpleScalar [7]. The main
enhancements are the separation of the reorder buffer and
the issue queue, and modeling ports for the register files.

The processor configuration and evaluated benchmarks
are those described in section 3. The only difference is the
issue queue configuration assumed for the baseline. In
order to do a reasonable comparison, the size of the issue

queue assumed for the baseline scheme is not unbounded.
The baseline configuration has two issue queues: one for
integer instructions and another for FP ones. They store
instructions out-of-order, like in P6 family (Pentium Pro,
Pentium II and Pentium III) and Pentium IV [22], and any
instruction in the queue can be issued if its operands are
ready and the required resources are available.

4.2. Configurations Evaluated

Based on the study presented in section 3, the

configurations that have been chosen are
MixBUFF_8x8_8x16 and IssueFIFO_8x8_8x16, both
with distributed functional units. For the sake of
readability they are referred to as MB_distr and IF_distr
respectively. They have been compared in terms of power
and performance with a baseline with 64 entries for the
integer issue queue and 64 entries for the FP issue queue.
It is referred to as IQ_64_64 in the rest of this paper. A
baseline with the same number of issue queue entries as
MB_distr and IF_distr (64 and 128 entries for integer and
FP queues respectively) has not been considered because
it implies higher power dissipation and more complexity
than the chosen baseline, and it achieves only 1.0% extra
IPC with respect to the chosen baseline.

It has been assumed that the baseline consumes energy
for waking-up only those CAM cells corresponding to
unready operands, as proposed in [14] in order to make it
more power efficient. A multiple-banked implementation
of the issue queue has also been assumed: each queue
consists of 8 banks with 8 entries each. Additionally, the
selection logic does not dissipate power if the queue is
empty for both the IQ_64_64 and MB_distr schemes
(IF_distr does not have selection logic).

4.3. Performance

Figure 7 shows the performance for integer

applications. As expected, both MB_distr and IF_distr
schemes achieve the same performance, except for eon
since it has a significant number of FP instructions. These
schemes lose on average 7.7% IPC w.r.t. the baseline,
which is a reasonable loss since the complexity of both
schemes is quite low for integer queues.

Figure 7. Performance for the integer benchmarks

IPC SPECINT

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0

bz
ip2

cra
fty eo

n
ga

p
gc

c
gz

ip mcf

pa
rse

r

pe
rlb

mk
tw

olf

vo
rte

x vp
r

HARMEAN

IQ_64_64
IF_distr
MB_distr

It can be observed in Figure 8 that IF_distr loses
significant performance (26.0%) for FP applications,
whereas MB_distr only loses 7.6% IPC w.r.t. the baseline.
MB_distr allows several chains to share the same queue
in an efficient way, so dispatch stage is stalled fewer
times than it is when the IF_distr scheme is used. It can
be also seen that MB_distr outperforms IF_distr for all FP
benchmarks.

Figure 8. Performance for the FP benchmarks

4.4. Energy Consumption

This section analyzes where the energy is consumed

for each scheme. Figure 9 shows the energy breakdown
for the baseline (IQ_64_64). Even though only unready
operands are woken up, and a multiple-banked
implementation is assumed, the wakeup dissipates most
of the power. Reading and writing instructions from/into
the issue queue (buff) as well as the selection logic
(select) dissipate significant power. The logic to drive
instructions to the functional units is significant only for
integer ALUs (MuxIntALU).

Figure 9. Energy breakdown for IQ_64_64 scheme

Figure 10 and Figure 11 show the energy breakdown
for IF_distr and MB_distr schemes. It can be observed
that integer applications consume 25-30% of the energy
in the table that stores the corresponding queue for each
logical register (Qrename). Reading and writing
instructions from/into the FIFO queues requires around
35% of the energy (fifo). Similar percentage is consumed

for reading and writing the information regarding which
registers are ready (regs_ready). Since the functional
units have been distributed across the queues, the logic to
drive the instructions to the functional units dissipates
negligible power.

FP benchmarks show similar trends than integer ones
for IF_distr, whereas MB_distr has other sources of
power dissipation. MB_distr scheme places FP
instructions into buffers (buff) instead of FIFO queues
(fifo). Some energy is spent selecting instructions (select)
and managing the information concerning chains’
latencies (chains). Finally, the energy required to drive
instructions to the functional units and to save the last
selected instruction (reg) is negligible.

Figure 10. Energy breakdown for IF_distr scheme

Figure 11. Energy breakdown for MB_distr scheme

4.5. Power Efficiency

Different metrics related with power-efficiency have

been proposed to compare different schemes [4].
Depending on what the constraints are, different metrics
should be used. Power is adequate when the heat is the
main constraint, whereas energy is used for comparing
schemes where the battery lifetime is the strongest
constraint. Other metrics like energy-delay and energy-

IPC SPECFP

0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0

am
mp

ap
plu ap

si art

eq
ua

ke

fac
erec

fm
a3d

ga
lgel

luc
as

mes
a

mgri
d

six
tra

ck
sw

im

wupw
ise

HARMEAN

IQ_64_64
IF_distr
MB_distr

Energy breakdown IQ_64_64

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPECINT SPECFP

MuxFPMUL
MuxFPALU
MuxIntMUL
MuxIntALU
select
buff
wakeup

Energy breakdown IF_distr

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPECINT SPECFP

MuxFPMUL
MuxFPALU
MuxIntMUL
MuxIntALU
regs_ready
fifo
Qrename

Energy breakdown MB_distr

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPECINT SPECFP

MuxFPMUL
MuxFPALU
MuxIntMUL
MuxIntALU
reg
chains
select
regs_ready
buff
fifo
Qrename

delay2 are more appropriate when execution time is also
important, as it usually is.

Different systems based on a superscalar processor can
have different limitations. For instance, laptops have
limitations in their cooling systems, so heat is a constraint
(strongly related to power). Additionally, battery lifetime
(energy) is also a constraint that must be considered in
laptop’s processor design. If the processor is to be used in
a desktop or mainframe, then execution time is a
significant factor (energy-delay). For the highest
performance server-class machines, it may be appropriate
to weight the delay part even more (energy-delay2). Thus,
we have decided to compare the different schemes using
all the metrics described above. The comparison has been
normalized to the baseline configuration.

Figure 12 and Figure 13 show the comparison in terms
of power and energy respectively for the issue queue. It
can be observed that both MB_distr and IF_distr dissipate
much less power and consume much less energy than
IQ_64_64. Their power and energy requirements are the
same for integer applications, but for FP ones MB_distr
spends a bit more energy.

Figure 12. Normalized power dissipation

Figure 13. Normalized energy consumption

Figure 14 and Figure 15 compare the different schemes

using the energy-delay and energy-delay2 metrics for the
whole processor considering that the issue queue
contribution to the total chip power is 23% [23]. It can be
observed in Figure 14 that MB_distr outperforms both
IF_distr and the baseline in energy-delay product for FP
applications. The poor performance of IF_distr is

basically due to its significant loss in IPC. Figure 15
shows that MB_distr significantly outperforms IF_distr
and achieves practically the same performance as the
baseline in terms of energy-delay2.

It must be taken into account that the reduced
complexity of the issue queue for both MB_distr and
IF_distr schemes may enable a reduction of the cycle
time, which may significantly reduce the execution time
for these two schemes and thus, significantly improve
their energy-delay and energy-delay2 metrics with respect
to the baseline. Measuring the effect of a shorter cycle
time requires a detailed circuit analysis of the whole
processor, which is out of the scope of this paper.

We conclude that MB_distr results in the best tradeoff
among performance, energy and power.

Figure 14. Normalized energy-delay product

Figure 15. Normalized energy-delay2 product

5. Conclusions

This paper presents a low-complexity FP issue queue

organization (MB_distr) that achieves high performance
with small energy requirements. The MB_distr scheme is
based on dispatching instructions into a set of multiple
queues depending on their data dependences at dispatch
time. Selection logic is based on estimating the
availability time of each operand, instead of the complex
and power-hungry conventional wakeup logic.
Additionally, the proposed issue logic organization
distributes the functional units across the different queues.
Thus, the complexity of the crossbar from the issue queue
to the functional units is significantly reduced.

Power (Normalized)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

SPECINT SPECFP

IQ_64_64
IF_distr
MB_distr

Energy (Normalized)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

SPECINT SPECFP

IQ_64_64
IF_distr
MB_distr

Energy x Delay (Normalized)

0

0,2

0,4

0,6

0,8

1

1,2

SPECINT SPECFP

IQ_64_64
IF_distr
MB_distr

Energy x Delay2 (Normalized)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

SPECINT SPECFP

IQ_64_64
IF_distr
MB_distr

The energy required by the proposed MB_distr scheme
is substantially lower than the energy required by a
baseline conventional issue queue, even if the baseline
has the capability of spending energy for waking-up only
unready operands. This baseline scheme has a much
longer delay than MB_distr.

It has been shown that MB_distr achieves similar
energy-delay2 product than the baseline and reduces the
product by 35% with respect to the IF_distr scheme. If
the energy-delay metric is used, then the reductions are
5% with respect to the baseline and 18% with respect to
the IF_distr scheme. The IPC loss of MB_distr scheme
for FP applications with respect to the high-complexity
baseline is only 7.6%, whereas IF_distr loses 26%.

Acknowledgements

This work has been supported by CICYT project
TIC2001-0995-C02-01, the Ministry of Education,
Culture and Sports of Spain, and Intel Corporation. We
would like to thank the anonymous reviewers by their
comments.

References

[1] J. Abella, R. Canal, A. González. Power- and Complexity-
Aware Issue Queue Designs. In IEEE Micro, September-
October 2003.
[2] J. Abella, A. González. Power-Aware Adaptive Issue
Queue and Register File. In proceedings of the International
Conference on High Performance Computing (HiPC’03),
December 2003.
[3] E. Brekelbaum, J. Rupley II, C. Wilkerson, B. Black.
Hierarchical Scheduling Windows. In proceedings of the
International Symposium on Microarchitecture (MICRO’02),
November 2002.
[4] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N.
Kudva, A. Buyuktosunoglu, J.D. Wellman, V. Zyuban, M.
Gupta, P.W. Cook. Power-Aware Microarchitecture: Design and
Modelling Challenges for Next-Generation Microprocessors. In
IEEE Micro, November-December 2000.
[5] D. Brooks, V. Tiwari, M. Martonosi. Wattch: a Framework
for Architectural-Level Power Analysis and Optimizations. In
proceedings of the 27th International Symposium on Computer
Architecture (ISCA’00), June 2000.
[6] M.D. Brown, J. Stark, Y.N. Patt. Select-Free Instruction
Scheduling Logic. In proceedings of the International
Symposium on Microarchitecture (MICRO’01), December
2001.
[7] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 3.0. Technical report, Computer Sciences Department,
University of Wisconsin-Madison, 1999.
[8] A. Buyuktosunoglu, D. Albonesi, P. Bose, P. Cook, S.
Schuster. Tradeoffs in Power-Efficient Issue Queue Design. In
proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED’02), August 2002.

[9] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks,
P. Bose and P. Cook. A Circuit Level Implementation of an
Adaptive Issue Queue for Power-Aware Microprocessors. In
proceedings of the 11th Great Lakes Symposium on VLSI
(GLSVLSI’01), March 2001.
[10] R. Canal and A. González. Reducing the Complexity of the
Issue Logic. In proceedings of the International Conference on
Supercomputing (ICS’01), June 2001.
[11] R. Canal and A. González. A Low-Complexity Issue Logic.
In proceedings of the International Conference on
Supercomputing (ICS’00), June 2000.
[12] S. Cotofana, B. Juurlink, S. Vassiliadis. Counter Based
Superscalar Instruction Issuing. In proceedings of the Euromicro
Conference, September 2000.
[13] D. Ernst, T. Austin. Efficient Dynamic Scheduling through
Tag Elimination. In proceedings of the 29th International
Symposium on Computer Architecture (ISCA’02), June 2002.
[14] D. Folegnani and A. González. Energy-Effective Issue
Logic. In proceeding of the 28th International Symposium on
Computer Architecture (ISCA’01), June 2001.
[15] M. Huang, J. Renau, J. Torrellas. Energy-Efficient Hybrid
Wakeup Logic. In proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED’02), August
2002.
[16] G. Kucuk, K. Ghose, D.V. Ponomarev, P.M. Kogge.
Energy-Efficient Instruction Dispatch Buffer Design for
Superscalar Processors. In proceedings of the International
Symposium on Low Power Electronics and Design
(ISLPED’01), August 2001.
[17] A.R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, E.
Rotenberg. A Large, Fast Instruction Window for Tolerating
Cache Misses. In proceedings of the 29th International
Symposium on Computer Architecture (ISCA’02), June 2002.
[18] P. Michaud, A. Seznec. Data-Flow Prescheduling for Large
Instruction Windows in Out-of-Order Processors. In proceedings
of the International Symposium on High Performance Computer
Architecture (HPCA’01), January 2001.
[19] S. Palacharla, N.P. Jouppi, J.E. Smith. Complexity-
Effective Superscalar Processors. In proceedings of the 24th
International Symposium on Computer Architecture (ISCA’97),
June 1997.
[20] S.E. Raasch, N.L. Binkert, S.K. Reinhardt. A Scalable
Instruction Queue Design Using Dependence Chains. In
proceedings of the 29th International Symposium on Computer
Architecture (ISCA’02), June 2002.
[21] P. Shivakumar and N.P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power and Area Model. Research report 2001/2,
WRL, Palo Alto, CA (USA), 2001.
[22] E. Sprangle. Personal Communication.
[23] K. Wilcox, S. Manne. Alpha Processors: a History of
Power Issues and a Look to the Future. In Cool-Chips Tutorial,
November 1999. Held in conjunction with MICRO-32.
[24] SPEC2000.http://www.specbench.org/osg/cpu2000

