4,801 research outputs found

    FfDL : A Flexible Multi-tenant Deep Learning Platform

    Full text link
    Deep learning (DL) is becoming increasingly popular in several application domains and has made several new application features involving computer vision, speech recognition and synthesis, self-driving automobiles, drug design, etc. feasible and accurate. As a result, large scale on-premise and cloud-hosted deep learning platforms have become essential infrastructure in many organizations. These systems accept, schedule, manage and execute DL training jobs at scale. This paper describes the design, implementation and our experiences with FfDL, a DL platform used at IBM. We describe how our design balances dependability with scalability, elasticity, flexibility and efficiency. We examine FfDL qualitatively through a retrospective look at the lessons learned from building, operating, and supporting FfDL; and quantitatively through a detailed empirical evaluation of FfDL, including the overheads introduced by the platform for various deep learning models, the load and performance observed in a real case study using FfDL within our organization, the frequency of various faults observed including unanticipated faults, and experiments demonstrating the benefits of various scheduling policies. FfDL has been open-sourced.Comment: MIDDLEWARE 201

    Preventing DDoS using Bloom Filter: A Survey

    Full text link
    Distributed Denial-of-Service (DDoS) is a menace for service provider and prominent issue in network security. Defeating or defending the DDoS is a prime challenge. DDoS make a service unavailable for a certain time. This phenomenon harms the service providers, and hence, loss of business revenue. Therefore, DDoS is a grand challenge to defeat. There are numerous mechanism to defend DDoS, however, this paper surveys the deployment of Bloom Filter in defending a DDoS attack. The Bloom Filter is a probabilistic data structure for membership query that returns either true or false. Bloom Filter uses tiny memory to store information of large data. Therefore, packet information is stored in Bloom Filter to defend and defeat DDoS. This paper presents a survey on DDoS defending technique using Bloom Filter.Comment: 9 pages, 1 figure. This article is accepted for publication in EAI Endorsed Transactions on Scalable Information System

    How Mobile Devices are Transforming Disaster Relief and Public Safety

    Get PDF
    With its growing usage, mobile technology is greatly improving disaster relief and public safety efforts. Countries around the world face threats from natural disasters, climate change, civil unrest, terrorist attacks, and criminal activities, among others. Mobile devices, tablets, and smart phones enable emergency providers and the general public to manage these challenges and mitigate public safety concerns.In this paper, part of the Brookings Mobile Economy Project, we focus on how mobile technology provides an early warning system, aids in emergency coordination, and improves public communications. In particular, we review how mobile devices assist with public safety, disaster planning, and crisis response. We explain how these devices are instrumental in the design and functioning of integrated, multi-layered communications networks. We demonstrate how they have helped save lives and ameliorate human suffering throughout the world

    UAV Based 5G Network: A Practical Survey Study

    Full text link
    Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks that could handle high-speed transmissions and enable wireless broadcasts. When compared to communications that rely on permanent infrastructure, UAVs offer a number of advantages, including flexible deployment, dependable line-of-sight (LoS) connection links, and more design degrees of freedom because of controlled mobility. Unmanned aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT) components have the potential to completely transform a variety of industries. UAVs may transfer massive volumes of data in real-time by utilizing the low latency and high-speed abilities of 5G networks, opening up a variety of applications like remote sensing, precision farming, and disaster response. This study of UAV communication with regard to 5G/B5G WLANs is presented in this research. The three UAV-assisted MEC network scenarios also include the specifics for the allocation of resources and optimization. We also concentrate on the case where a UAV does task computation in addition to serving as a MEC server to examine wind farm turbines. This paper covers the key implementation difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models, and coupled trajectory-computation performance optimization, in order to promote widespread implementations of UAV-assisted MEC in practice. The primary problem for 5G and beyond 5G (B5G) is delivering broadband access to various device kinds. Prior to discussing associated research issues faced by the developing integrated network design, we first provide a brief overview of the background information as well as the networks that integrate space, aviation, and land

    Applications of the Internet of Medical Things to Type 1 Diabetes Mellitus

    Get PDF
    Type 1 Diabetes Mellitus (DM1) is a condition of the metabolism typified by persistent hyperglycemia as a result of insufficient pancreatic insulin synthesis. This requires patients to be aware of their blood glucose level oscillations every day to deduce a pattern and anticipate future glycemia, and hence, decide the amount of insulin that must be exogenously injected to maintain glycemia within the target range. This approach often suffers from a relatively high imprecision, which can be dangerous. Nevertheless, current developments in Information and Communication Technologies (ICT) and innovative sensors for biological signals that might enable a continuous, complete assessment of the patient’s health provide a fresh viewpoint on treating DM1. With this, we observe that current biomonitoring devices and Continuous Glucose Monitoring (CGM) units can easily obtain data that allow us to know at all times the state of glycemia and other variables that influence its oscillations. A complete review has been made of the variables that influence glycemia in a T1DM patient and that can be measured by the above means. The communications systems necessary to transfer the information collected to a more powerful computational environment, which can adequately handle the amounts of data collected, have also been described. From this point, intelligent data analysis extracts knowledge from the data and allows predictions to be made in order to anticipate risk situations. With all of the above, it is necessary to build a holistic proposal that allows the complete and smart management of T1DM. This approach evaluates a potential shortage of such suggestions and the obstacles that future intelligent IoMT-DM1 management systems must surmount. Lastly, we provide an outline of a comprehensive IoMT-based proposal for DM1 management that aims to address the limits of prior studies while also using the disruptive technologies highlighted beforePartial funding for open access charge: Universidad de Málag
    • …
    corecore