189 research outputs found

    Multi-perspective Evaluation of Self-Healing Systems Using Simple Probabilistic Models

    Get PDF
    Quantifying the efficacy of self-healing systems is a challenging but important task, which has implications for increasing designer, operator and end-user confidence in these systems. During design system architects benefit from tools and techniques that enhance their understanding of the system, allowing them to reason about the tradeoffs of proposed or existing self-healing mechanisms and the overall effectiveness of the system as a result of different mechanism-compositions. At deployment time, system integrators and operators need to understand how the selfhealing mechanisms work and how their operation impacts the system's reliability, availability and serviceability (RAS) in order to cope with any limitations of these mechanisms when the system is placed into production. In this paper we construct an evaluation framework for selfhealing systems around simple, yet powerful, probabilistic models that capture the behavior of the system's selfhealing mechanisms from multiple perspectives (designer, operator, and end-user). We combine these analytical models with runtime fault-injection to study the operation of VM-Rejuv — a virtual machine based rejuvenation scheme for web-application servers. We use the results from the fault-injection experiments and model-analysis to reason about the efficacy of VM-Rejuv, its limitations and strategies for managing/mitigating these limitations in system deployments. Whereas we use VM-Rejuv as the subject of our evaluation in this paper, our main contribution is a practical evaluation approach that can be generalized to other self-healing systems

    From Resilience-Building to Resilience-Scaling Technologies: Directions -- ReSIST NoE Deliverable D13

    Get PDF
    This document is the second product of workpackage WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellence. The problem that ReSIST addresses is achieving sufficient resilience in the immense systems of ever evolving networks of computers and mobile devices, tightly integrated with human organisations and other technology, that are increasingly becoming a critical part of the information infrastructure of our society. This second deliverable D13 provides a detailed list of research gaps identified by experts from the four working groups related to assessability, evolvability, usability and diversit

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    Resilience-Building Technologies: State of Knowledge -- ReSIST NoE Deliverable D12

    Get PDF
    This document is the first product of work package WP2, "Resilience-building and -scaling technologies", in the programme of jointly executed research (JER) of the ReSIST Network of Excellenc
    corecore