3,046 research outputs found

    Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches

    Full text link
    This paper introduces simple analytical formulas for the grid impedance of electrically dense arrays of square patches and for the surface impedance of high-impedance surfaces based on the dense arrays of metal strips or square patches over ground planes. Emphasis is on the oblique-incidence excitation. The approach is based on the known analytical models for strip grids combined with the approximate Babinet principle for planar grids located at a dielectric interface. Analytical expressions for the surface impedance and reflection coefficient resulting from our analysis are thoroughly verified by full-wave simulations and compared with available data in open literature for particular cases. The results can be used in the design of various antennas and microwave or millimeter wave devices which use artificial impedance surfaces and artificial magnetic conductors (reflect-array antennas, tunable phase shifters, etc.), as well as for the derivation of accurate higher-order impedance boundary conditions for artificial (high-) impedance surfaces. As an example, the propagation properties of surface waves along the high-impedance surfaces are studied.Comment: 12 pages, 10 figures, submitted to IEEE Transactions on Antennas and Propagatio

    Fabrication scheme for dense aquatic flow sensor arrays

    Get PDF
    A fabrication scheme to realize dense arrays of flexible, closed membranes with a small gap separating them from the substrate is presented. These membranes are the first step towards aquatic hair based flow sensors biomimicking fish lateral line. Electrodes are integrated underneath the membrane to avoid contact with the liquid. Arrays of membranes with a diameter of 100 μm, gap height of 3 μm, and mutual distance of 200 μm have been successfully fabricated

    Guided Neuronal Growth on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes

    Get PDF
    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes -- similar to myelin -- is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.Comment: 3 pages, 4 figure

    Suppression of Heating Rates in Cryogenic Surface-Electrode Ion Traps

    Full text link
    Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 um ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in 75 um to 150 um range. Upon cooling to 6 K, the measured rates are suppressed by 7 orders of magnitude, two orders of magnitude below previously published data of similarly sized traps operated at room temperature. The observed noise depends strongly on fabrication process, which suggests further improvements are possible.Comment: 4 pages, 4 figure

    Spin Manipulation by Creation of Single-Molecule Radical Cations

    Get PDF
    All-trans-retinoic acid (ReA), a closed-shell organic molecule comprising only C, H, and O atoms, is investigated on a Au(111) substrate using scanning tunneling microscopy and spectroscopy. In dense arrays single ReA molecules are switched to a number of states, three of which carry a localized spin as evidenced by conductance spectroscopy in high magnetic fields. The spin of a single molecule may be reversibly switched on and off without affecting its neighbors. We suggest that ReA on Au is readily converted to a radical by the abstraction of an electron.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Technologies for trapped-ion quantum information systems

    Get PDF
    Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, transmit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.Comment: 19 pages, 18 figure

    Cooperativity in the enhanced piezoelectric response of polymer nanowires

    Full text link
    We provide a detailed insight into piezoelectric energy generation from arrays of polymer nanofibers. For sake of comparison, we firstly measure individual poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFe)) fibers at well-defined levels of compressive stress. Under an applied load of 2 mN, single nanostructures generate a voltage of 0.45 mV. We show that under the same load conditions, fibers in dense arrays exhibit a voltage output higher by about two orders of magnitude. Numerical modelling studies demonstrate that the enhancement of the piezoelectric response is a general phenomenon associated to the electromechanical interaction among adjacent fibers, namely a cooperative effect depending on specific geometrical parameters. This establishes new design rules for next piezoelectric nano-generators and sensors.Comment: 31 pages, 11 figures, 1 tabl
    • …
    corecore