26,178 research outputs found

    Quasi-randomness and algorithmic regularity for graphs with general degree distributions

    Get PDF
    We deal with two intimately related subjects: quasi-randomness and regular partitions. The purpose of the concept of quasi-randomness is to express how much a given graph ā€œresemblesā€ a random one. Moreover, a regular partition approximates a given graph by a bounded number of quasi-random graphs. Regarding quasi-randomness, we present a new spectral characterization of low discrepancy, which extends to sparse graphs. Concerning regular partitions, we introduce a concept of regularity that takes into account vertex weights, and show that if G=(V,E)G=(V,E) satisfies a certain boundedness condition, then GG admits a regular partition. In addition, building on the work of Alon and Naor [Proceedings of the 36th ACM Symposium on Theory of Computing (STOC), Chicago, IL, ACM, New York, 2004, pp. 72ā€“80], we provide an algorithm that computes a regular partition of a given (possibly sparse) graph GG in polynomial time. As an application, we present a polynomial time approximation scheme for MAX CUT on (sparse) graphs without ā€œdense spots.

    Asymptotics for Sparse Exponential Random Graph Models

    Full text link
    We study the asymptotics for sparse exponential random graph models where the parameters may depend on the number of vertices of the graph. We obtain exact estimates for the mean and variance of the limiting probability distribution and the limiting log partition function of the edge-(single)-star model. They are in sharp contrast to the corresponding asymptotics in dense exponential random graph models. Similar analysis is done for directed sparse exponential random graph models parametrized by edges and multiple outward stars.Comment: 20 page

    Right-convergence of sparse random graphs

    Get PDF
    The paper is devoted to the problem of establishing right-convergence of sparse random graphs. This concerns the convergence of the logarithm of number of homomorphisms from graphs or hyper-graphs \G_N, N\ge 1 to some target graph WW. The theory of dense graph convergence, including random dense graphs, is now well understood, but its counterpart for sparse random graphs presents some fundamental difficulties. Phrased in the statistical physics terminology, the issue is the existence of the log-partition function limits, also known as free energy limits, appropriately normalized for the Gibbs distribution associated with WW. In this paper we prove that the sequence of sparse \ER graphs is right-converging when the tensor product associated with the target graph WW satisfies certain convexity property. We treat the case of discrete and continuous target graphs WW. The latter case allows us to prove a special case of Talagrand's recent conjecture (more accurately stated as level III Research Problem 6.7.2 in his recent book), concerning the existence of the limit of the measure of a set obtained from RN\R^N by intersecting it with linearly in NN many subsets, generated according to some common probability law. Our proof is based on the interpolation technique, introduced first by Guerra and Toninelli and developed further in a series of papers. Specifically, Bayati et al establish the right-convergence property for Erdos-Renyi graphs for some special cases of WW. In this paper most of the results in this paper follow as a special case of our main theorem.Comment: 22 page

    On the strong chromatic number of random graphs

    Full text link
    Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of V(G) into disjoint sets V_1 \cup ... \cup V_r, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_i. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding k \lceil n/k \rceil - n isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph G(n, p). In the dense case when p >> n^{-1/3}, we prove that the strong chromatic number is a.s. concentrated on one value \Delta+1, where \Delta is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.Comment: 16 page

    An LpL^p theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions

    Full text link
    We introduce and develop a theory of limits for sequences of sparse graphs based on LpL^p graphons, which generalizes both the existing LāˆžL^\infty theory of dense graph limits and its extension by Bollob\'as and Riordan to sparse graphs without dense spots. In doing so, we replace the no dense spots hypothesis with weaker assumptions, which allow us to analyze graphs with power law degree distributions. This gives the first broadly applicable limit theory for sparse graphs with unbounded average degrees. In this paper, we lay the foundations of the LpL^p theory of graphons, characterize convergence, and develop corresponding random graph models, while we prove the equivalence of several alternative metrics in a companion paper.Comment: 44 page
    • ā€¦
    corecore