2 research outputs found

    Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous Image Dehazing

    Full text link
    Recently, CNN based end-to-end deep learning methods achieve superiority in Image Dehazing but they tend to fail drastically in Non-homogeneous dehazing. Apart from that, existing popular Multi-scale approaches are runtime intensive and memory inefficient. In this context, we proposed a fast Deep Multi-patch Hierarchical Network to restore Non-homogeneous hazed images by aggregating features from multiple image patches from different spatial sections of the hazed image with fewer number of network parameters. Our proposed method is quite robust for different environments with various density of the haze or fog in the scene and very lightweight as the total size of the model is around 21.7 MB. It also provides faster runtime compared to current multi-scale methods with an average runtime of 0.0145s to process 1200x1600 HD quality image. Finally, we show the superiority of this network on Dense Haze Removal to other state-of-the-art models.Comment: CVPR Workshops Proceedings 202

    Assessing the utility of low resolution brain imaging: treatment of infant hydrocephalus

    Get PDF
    As low-field MRI technology is being disseminated into clinical settings around the world, it is important to assess the image quality required to properly diagnose and treat a given disease and evaluate the role of machine learning algorithms, such as deep learning, in the enhancement of lower quality images. In this post hoc analysis of an ongoing randomized clinical trial, we assessed the diagnostic utility of reduced-quality and deep learning enhanced images for hydrocephalus treatment planning. CT images of post-infectious infant hydrocephalus were degraded in terms of spatial resolution, noise, and contrast between brain and CSF and enhanced using deep learning algorithms. Both degraded and enhanced images were presented to three experienced pediatric neurosurgeons accustomed to working in low-to middle-income countries (LMIC) for assessment of clinical utility in treatment planning for hydrocephalus. In addition, enhanced images were presented alongside their ground truth CT counterparts in order to assess whether reconstruction errors caused by the deep learning enhancement routine were acceptable to the evaluators. Results indicate that image resolution and contrast-to-noise ratio between brain and CSF predict the likelihood of an image being characterized as useful for hydrocephalus treatment planning. Deep learning enhancement substantially increases contrast-to-noise ratio improving the apparent likelihood of the image being useful; however, deep learning enhancement introduces structural errors which create a substantial risk of misleading clinical interpretation. We find that images with lower quality than is customarily acceptable can be useful for hydrocephalus treatment planning. Moreover, low quality images may be preferable to images enhanced with deep learning, since they do not introduce the risk of misleading information which could misguide treatment decisions. These findings advocate for new standards in assessing acceptable image quality for clinical use.Neuro Imaging Researc
    corecore