5 research outputs found

    Dense RGB-D Semantic Mapping with Pixel-Voxel Neural Network

    Get PDF
    In this paper, a novel Pixel-Voxel network is proposed for dense 3D semantic mapping, which can perform dense 3D mapping while simultaneously recognizing and labelling the semantic category each point in the 3D map. In our approach, we fully leverage the advantages of different modalities. That is, the PixelNet can learn the high-level contextual information from 2D RGB images, and the VoxelNet can learn 3D geometrical shapes from the 3D point cloud. Unlike the existing architecture that fuses score maps from different modalities with equal weights, we propose a softmax weighted fusion stack that adaptively learns the varying contributions of PixelNet and VoxelNet and fuses the score maps according to their respective confidence levels. Our approach achieved competitive results on both the SUN RGB-D and NYU V2 benchmarks, while the runtime of the proposed system is boosted to around 13 Hz, enabling near-real-time performance using an i7 eight-cores PC with a single Titan X GPU

    Learning monocular visual odometry with dense 3D mapping from dense 3D flow

    Get PDF
    This paper introduces a fully deep learning approach to monocular SLAM, which can perform simultaneous localization using a neural network for learning visual odometry (L-VO) and dense 3D mapping. Dense 2D flow and a depth image are generated from monocular images by sub-networks, which are then used by a 3D flow associated layer in the L-VO network to generate dense 3D flow. Given this 3D flow, the dual-stream L-VO network can then predict the 6DOF relative pose and furthermore reconstruct the vehicle trajectory. In order to learn the correlation between motion directions, the Bivariate Gaussian modelling is employed in the loss function. The L-VO network achieves an overall performance of 2.68% for average translational error and 0.0143 deg/m for average rotational error on the KITTI odometry benchmark. Moreover, the learned depth is fully leveraged to generate a dense 3D map. As a result, an entire visual SLAM system, that is, learning monocular odometry combined with dense 3D mapping, is achieved.Comment: International Conference on Intelligent Robots and Systems(IROS 2018

    Learning Monocular Visual Odometry with Dense 3D Mapping from Dense 3D Flow

    Get PDF
    This paper introduces a fully deep learning approach to monocular SLAM, which can perform simultaneous localization using a neural network for learning visual odometry (L-VO) and dense 3D mapping. Dense 2D flow and a depth image are generated from monocular images by sub-networks, which are then used by a 3D flow associated layer in the L-VO network to generate dense 3D flow. Given this 3D flow, the dual-stream L-VO network can then predict the 6DOF relative pose and furthermore reconstruct the vehicle trajectory. In order to learn the correlation between motion directions, the Bivariate Gaussian modeling is employed in the loss function. The L-VO network achieves an overall performance of 2.68 % for average translational error and 0.0143°/m for average rotational error on the KITTI odometry benchmark. Moreover, the learned depth is leveraged to generate a dense 3D map. As a result, an entire visual SLAM system, that is, learning monocular odometry combined with dense 3D mapping, is achieved

    Deep Learning based 3D Segmentation: A Survey

    Full text link
    3D object segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving, robotics, augmented reality and medical image analysis. It has received significant attention from the computer vision, graphics and machine learning communities. Traditionally, 3D segmentation was performed with hand-crafted features and engineered methods which failed to achieve acceptable accuracy and could not generalize to large-scale data. Driven by their great success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks as well. This has led to an influx of a large number of methods in the literature that have been evaluated on different benchmark datasets. This paper provides a comprehensive survey of recent progress in deep learning based 3D segmentation covering over 150 papers. It summarizes the most commonly used pipelines, discusses their highlights and shortcomings, and analyzes the competitive results of these segmentation methods. Based on the analysis, it also provides promising research directions for the future.Comment: Under review of ACM Computing Surveys, 36 pages, 10 tables, 9 figure

    Neural Network based Robot 3D Mapping and Navigation using Depth Image Camera

    Get PDF
    Robotics research has been developing rapidly in the past decade. However, in order to bring robots into household or office environments and cooperate well with humans, it is still required more research works. One of the main problems is robot localization and navigation. To be able to accomplish its missions, the mobile robot needs to solve problems of localizing itself in the environment, finding the best path and navigate to the goal. The navigation methods can be categorized into map-based navigation and map-less navigation. In this research we propose a method based on neural networks, using a depth image camera to solve the robot navigation problem. By using a depth image camera, the surrounding environment can be recognized regardless of the lighting conditions. A neural network-based approach is fast enough for robot navigation in real-time which is important to develop the full autonomous robots.In our method, mapping and annotating of the surrounding environment is done by the robot using a Feed-Forward Neural Network and a CNN network. The 3D map not only contains the geometric information of the environments but also their semantic contents. The semantic contents are important for robots to accomplish their tasks. For instance, consider the task “Go to cabinet to take a medicine”. The robot needs to know the position of the cabinet and medicine which is not supplied by solely the geometrical map. A Feed-Forward Neural Network is trained to convert the depth information from depth images into 3D points in real-world coordination. A CNN network is trained to segment the image into classes. By combining the two neural networks, the objects in the environment are segmented and their positions are determined.We implemented the proposed method using the mobile humanoid robot. Initially, the robot moves in the environment and build the 3D map with objects placed in their positions. Then, the robot utilizes the developed 3D map for goal-directed navigation.The experimental results show good performance in terms of the 3D map accuracy and robot navigation. Most of the objects in the working environments are classified by the trained CNN. Un-recognized objects are classified by Feed-Forward Neural Network. As a result, the generated maps reflected exactly working environments and can be applied for robots to safely navigate in them. The 3D geometric maps can be generated regardless of the lighting conditions. The proposed localization method is robust even in texture-less environments which are the toughest environments in the field of vision-based localization.博士(工学)法政大学 (Hosei University
    corecore