104,978 research outputs found

    The 2nd 3D Face Alignment In The Wild Challenge (3DFAW-video): Dense Reconstruction From Video

    Get PDF
    3D face alignment approaches have strong advantages over 2D with respect to representational power and robustness to illumination and pose. Over the past few years, a number of research groups have made rapid advances in dense 3D alignment from 2D video and obtained impressive results. How these various methods compare is relatively unknown. Previous benchmarks addressed sparse 3D alignment and single image 3D reconstruction. No commonly accepted evaluation protocol exists for dense 3D face reconstruction from video with which to compare them. The 2nd 3D Face Alignment in the Wild from Videos (3DFAW-Video) Challenge extends the previous 3DFAW 2016 competition to the estimation of dense 3D facial structure from video. It presented a new large corpora of profile-to-profile face videos recorded under different imaging conditions and annotated with corresponding high-resolution 3D ground truth meshes. In this paper we outline the evaluation protocol, the data used, and the results. 3DFAW-Video is to be held in conjunction with the 2019 International Conference on Computer Vision, in Seoul, Korea

    MVF-Net: Multi-View 3D Face Morphable Model Regression

    Full text link
    We address the problem of recovering the 3D geometry of a human face from a set of facial images in multiple views. While recent studies have shown impressive progress in 3D Morphable Model (3DMM) based facial reconstruction, the settings are mostly restricted to a single view. There is an inherent drawback in the single-view setting: the lack of reliable 3D constraints can cause unresolvable ambiguities. We in this paper explore 3DMM-based shape recovery in a different setting, where a set of multi-view facial images are given as input. A novel approach is proposed to regress 3DMM parameters from multi-view inputs with an end-to-end trainable Convolutional Neural Network (CNN). Multiview geometric constraints are incorporated into the network by establishing dense correspondences between different views leveraging a novel self-supervised view alignment loss. The main ingredient of the view alignment loss is a differentiable dense optical flow estimator that can backpropagate the alignment errors between an input view and a synthetic rendering from another input view, which is projected to the target view through the 3D shape to be inferred. Through minimizing the view alignment loss, better 3D shapes can be recovered such that the synthetic projections from one view to another can better align with the observed image. Extensive experiments demonstrate the superiority of the proposed method over other 3DMM methods.Comment: 2019 Conference on Computer Vision and Pattern Recognitio

    Dense 3D Face Correspondence

    Full text link
    We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28mm on synthetic faces and detected 1414 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5% face recognition accuracy on the FRGCv2 and 98.6% on Bosphorus database. Our dense model is also able to generalize to unseen datasets.Comment: 24 Pages, 12 Figures, 6 Tables and 3 Algorithm
    • …
    corecore