433 research outputs found

    Denominator Bounds and Polynomial Solutions for Systems of q-Recurrences over K(t) for Constant K

    Full text link
    We consider systems A_\ell(t) y(q^\ell t) + ... + A_0(t) y(t) = b(t) of higher order q-recurrence equations with rational coefficients. We extend a method for finding a bound on the maximal power of t in the denominator of arbitrary rational solutions y(t) as well as a method for bounding the degree of polynomial solutions from the scalar case to the systems case. The approach is direct and does not rely on uncoupling or reduction to a first order system. Unlike in the scalar case this usually requires an initial transformation of the system.Comment: 8 page

    Extended Rate, more GFUN

    Get PDF
    We present a software package that guesses formulae for sequences of, for example, rational numbers or rational functions, given the first few terms. We implement an algorithm due to Bernhard Beckermann and George Labahn, together with some enhancements to render our package efficient. Thus we extend and complement Christian Krattenthaler's program Rate, the parts concerned with guessing of Bruno Salvy and Paul Zimmermann's GFUN, the univariate case of Manuel Kauers' Guess.m and Manuel Kauers' and Christoph Koutschan's qGeneratingFunctions.m.Comment: 26 page

    NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions

    Get PDF
    This article describes the implementation in the software package NumGfun of classical algorithms that operate on solutions of linear differential equations or recurrence relations with polynomial coefficients, including what seems to be the first general implementation of the fast high-precision numerical evaluation algorithms of Chudnovsky & Chudnovsky. In some cases, our descriptions contain improvements over existing algorithms. We also provide references to relevant ideas not currently used in NumGfun

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    Arithmetic Properties of Picard-Fuchs Equations and Holonomic Recurrences

    Full text link
    The coefficient series of the holomorphic Picard-Fuchs differential equation associated with the periods of elliptic curves often have surprising number-theoretic properties. These have been widely studied in the case of the torsion-free, genus zero congruence subgroups of index 6 and 12 (e.g. the Beauville families). Here, we consider arithmetic properties of the Picard-Fuchs solutions associated to general elliptic families, with a particular focus on the index 24 congruence subgroups. We prove that elliptic families with rational parameters admit linear reparametrizations such that their associated Picard-Fuchs solutions lie in Z[[t]]. A sufficient condition is given such that the same holds for holomorphic solutions at infinity. An Atkin-Swinnerton-Dyer congruence is proven for the coefficient series attached to \Gamma_1(7). We conclude with a consideration of asymptotics, wherein it is proved that many coefficient series satisfy asymptotic expressions of the form u_n \sim \ell \lambda^n/n. Certain arithmetic results extend to the study of general holonomic recurrences.Comment: 21 pages, to appear in the Journal of Number Theor
    corecore