
HAL Id: inria-00456983
https://hal.inria.fr/inria-00456983v2

Submitted on 8 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons CC0 - Public Domain Dedication| 4.0 International
License

NumGfun: a Package for Numerical and Analytic
Computation with D-finite Functions

Marc Mezzarobba

To cite this version:
Marc Mezzarobba. NumGfun: a Package for Numerical and Analytic Computation with D-finite
Functions. ISSAC - International Symposium on Symbolic and Algebraic Computation, Jul 2010,
Munich, Germany. pp.139-146, �10.1145/1837934.1837965�. �inria-00456983v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/217001552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00456983v2
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://hal.archives-ouvertes.fr

NumGfun: a Package for Numerical and Analytic
Computation with D-finite Functions

Marc Mezzarobba
Algorithms Project-Team, INRIA Paris-Rocquencourt, France

marc.mezzarobba@inria.fr

ABSTRACT
This article describes the implementation in the software
package NumGfun of classical algorithms that operate on so-
lutions of linear differential equations or recurrence relations
with polynomial coefficients, including what seems to be the
first general implementation of the fast high-precision nu-
merical evaluation algorithms of Chudnovsky & Chudnovsky.
In some cases, our descriptions contain improvements over
existing algorithms. We also provide references to relevant
ideas not currently used in NumGfun.

Categories and Subject Descriptors: I.1.2 [Symbolic

and Algebraic Manipulation]: Algorithms

General Terms: Algorithms, Experimentation, Theory

Keywords: D-finite functions, linear differential equations,
certified numerical computation, bounds, Maple

1. INTRODUCTION
Support for computing with D-finite functions, that is,

solutions of linear differential equations with polynomial co-
efficients, has become a common feature of computer alge-
bra systems. For instance, Mathematica now provides a
data structure called DifferentialRoot to represent arbi-
trary D-finite functions by differential equations they satisfy
and initial values. Maple’s DESol is similar but more limited.

An important source of such general D-finite functions
is combinatorics, due to the fact that many combinatorial
structures have D-finite generating functions. Moreover,
powerful methods allow to get from a combinatorial de-
scription of a class of objects to a system of differential
equations that “count” these objects, and then to extract
precise asymptotic information from these equations, even
when no explicit counting formula is available [15, 30]. A
second major application of D-finiteness is concerned with
special functions. Indeed, many classical functions of mathe-
matical physics are D-finite (often by virtue of being defined
as “interesting” solutions of simple differential equations),
which allows to treat them uniformly in algorithms. This is

This work is in the public domain. As such, it is not subject tocopyright.
Where it is not legally possible to consider this work as released into the
public domain, any entity is granted the right to use this work for any pur-
pose, without any conditions, unless such conditions are required by law.
ISSAC 2010,25–28 July 2010, Munich, Germany.

exploited by the Encyclopedia of Special Functions [25] and
its successor under development, the Dynamic Dictionary
of Mathematical Functions [20], an interactive computer-
generated handbook of special functions.

These applications require at some point the ability to per-
form “analytic” computations with D-finite functions, start-
ing with their numerical evaluation. Relevant algorithms ex-
ist in the literature. In particular, D-finite functions may
be computed with an absolute error bounded by 2−n in
n logO(1) n bit operations—that is, in softly linear time in
the size of the result written in fixed-point notation—at
any point of their Riemann surfaces [12], the necessary er-
ror bounds also being computed from the differential equa-
tion and initial values [32]. However, these algorithms have
remained theoretical [13, §9.2.1]. The ability of computer
algebra systems to work with D-finite functions is (mostly)
limited to symbolic manipulations, and the above-mentioned
fast evaluation algorithm has served as a recipe to write nu-
merical evaluation routines for specific functions rather than
as an algorithm for the entire class of D-finite functions.

This article introduces NumGfun, a Maple package that
attempts to fill this gap, and contains, among other things,
a general implementation of that algorithm. NumGfun is
distributed as a subpackage of gfun [29], under the GNU
LGPL. Note that it comes with help pages: the goal of the
present article is not to take the place of user documentation,
but rather to describe the features and implementation of
the package, with supporting examples, while providing an
overview of techniques relevant to the development of simi-
lar software. The following examples illustrate typical uses
of NumGfun, first to compute a remote term from a com-
binatorial sequence, then to evaluate a special function to
high precision near one of its singularities.

Example 1. The Motzkin number Mn is the number of
ways of drawing non-intersecting chords between n points
placed on a circle. Motzkin numbers satisfy (n + 4)Mn+2 =
3(n+1)Mn +(2n+5)Mn+1. Using NumGfun, the command
nth_term({(n+4)*M(n+2)=3*(n+1)*M(n)+(2*n+5)*M(n+1),

M(0)=1,M(1)=1},M(n),k) computes M105 = 6187 . . . 7713 ≃
1047 706 in1 4.7 s and M106 = 2635 . . . 9151 ≃ 10477 112 in
1 min. Naïvely unrolling the recurrence (using Maple) takes
10.7 s for M105 , and 41 s for M2·105 . On this (non-generic)
example, nth_term could be made competitive for smaller
indices by taking advantage of the fact that the divisions
that occur while unrolling the recurrence are exact.

1All timings reported in this article were obtained with the
following configuration: Intel T7250 CPU at 2 GHz, 1 GB
of RAM, Linux 2.6.32, Maple 13, GMP 4.2.1.

Example 2. The double confluent Heun function Uα,β,γ,δ

satisfies (z2− 1)3U ′′(z) + (2z5 − 4z3 − αz4 + 2z + α)U ′(z) +
(βz2 + (2α + γ)z + δ)U(z) = 0, U(0) = 1, U ′(0) = 0. It is
singular at z = ±1. The command evaldiffeq(eq,y(z),

-0.99,1000) where eq is this differential equation yields
U1, 1

3
, 1

2
,3(−0.99) ≈ 4.67755...(990 digits)...05725 in 22 s.

Related work.Most algorithms implemented in NumGfun
originate in work of Chudnovsky & Chudnovsky and of van
der Hoeven. Perhaps the most central of these is the “bit
burst” numerical evaluation method [12]. It belongs to the
family of binary splitting algorithms for D-finite series, hints
at the existence of which go back to [2, §178], and general-
izes earlier work of Brent [6] for specific elementary functions.
Better known (thanks among others to [21]) binary splitting
algorithms can be seen as special cases of the bit burst al-
gorithm. One reason why, unlike these special cases, it was
not used in practice is that in [12], none of the error control
needed to ensure the accuracy of the computed result is part
of the algorithm. Van der Hoeven’s version [32] addresses
this issue, thus giving a full-fledged evaluation algorithm for
the class of D-finite functions, as opposed to a method to
compute any D-finite function given certain bounds.

These algorithms extend to the computation of limits of
D-finite functions at singularities of their defining equation.
The case of regular singularities is treated both in [11, 12],
and more completely in [33], that of irregular singular points
in [35]. See [4, §12.7], [35, §1] for more history and context.

On the implementation side, routines based on binary
splitting for the evaluation of various elementary and spe-
cial functions are used in general-purpose libraries such as
CLN [19] and MPFR [16, 23]. Binary splitting of fast con-
verging series is also the preferred algorithm of software ded-
icated to the high-precision computation of mathematical
constants on standard PCs, including the current record
holder for π [3]. Finally, even the impressive range of built-in
functions of computer algebra systems is not always sufficient
for applications. Works on the implementation of classes of
“less common” special functions that overlap those consid-
ered in NumGfun include [1, 14].

This work is based in part on the earlier [26].

Contribution. The main contribution presented in this arti-
cle is NumGfun itself. We recall the algorithms it uses, and
discuss various implementation issues. Some of these de-
scriptions include improvements or details that do not seem
to have appeared elsewhere. Specifically: (i) we give a new
variant of the analytic continuation algorithm for D-finite
functions that is faster with respect to the order and degree
of the equation; (ii) we improve the complexity analysis of
the bit burst algorithm by a factor log log n; (iii) we point
out that Poole’s method to construct solutions of differen-
tial equations at regular singular points can be rephrased
in a compact way in the language of noncommutative poly-
nomials, leading to faster evaluation of D-finite functions in
these points; and (iv) we describe in some detail the practical
computation of all the bounds needed to obtain a provably
correct result.

What NumGfun is not.Despite sharing some of the algo-
rithms used to compute mathematical constants to billions
of digits, our code aims to cover as much as possible of the
class of D-finite functions, not to break records. Also, it

is limited to “convergent” methods: asymptotic expansions,
summation to the least term, and resummation of divergent
power series are currently out of scope.

Terminology.Like the rest of gfun, NumGfun works with
D-finite functions and P-recursive sequences. We recall only
basic definitions here; see [30, §6.4] for further properties. A
formal power series y ∈ C[[z]] is D-finite over K ⊆ C if it
solves a non-trivial linear differential equation

y(r)(z) + ar−1(z) y(r−1)(z) + · · ·+ a0(z) y(z) = 0 (1)

with coefficients ak ∈ K(z). The same definition applies to
analytic functions. A sequence u ∈ CN is P-recursive over K
if it satisfies a non-trivial linear recurrence relation

un+s + bs−1(n) un+s−1 + · · ·+ b0(n) un = 0, bk ∈ K(n). (2)

A sequence (un)n∈N is P-recursive if and only if its generat-
ing series

∑

n∈N unzn is D-finite.

The poles of the coefficients ak of (1) are its singular
points; nonsingular points are called ordinary. In gfun, a
D-finite function is represented by a differential equation
of the form (1) and initial values at the origin, which we
assume to be an ordinary point. Similarly, P-recursive se-
quences are encoded by a recurrence relation plus initial
values, as in Ex. 1 above. If y(z) =

∑∞

k=0
ykzk, we let

y;n(z) =
∑n−1

k=0
ykzk and yn;(z) =

∑∞

k=n
ykzk.

The height of an object is the maximum bit-size of the
integers appearing in its representation: the height of a
rational number p/q is max(⌈log p⌉, ⌈log q⌉), and that of a
complex number (we assume that elements of number fieldsQ(ζ) are represented as

∑

i
xiζ

i/d with xi, d ∈ Z), poly-
nomial, matrix, or combination thereof with rational coeffi-
cients is the maximum height of its coefficients. We assume
that the bit complexity M(n) of n-bit integer multiplica-

tion satisfies M(n) = n(log n)O(1), M(n) = Ω(n log n), and
M(n + m) ≥M(n) + M(m), and that s× s matrices can be
multiplied in O(sω) operations in their coefficient ring.

2. BINARY SPLITTING
“Unrolling” a recurrence relation of the form (2) to com-

pute u0, . . . , uN takes Θ(N2M(log N)) bit operations, which
is almost linear in the total size of u0, . . . , uN , but quadratic
in that of uN . The binary splitting algorithm computes a
single term uN in essentially linear time, as follows: (2) is
first reduced to a matrix recurrence of the first order with a
single common denominator:

q(n)Un+1 = B(n)Un, B(n) ∈ Z[n]s×s, q(n) ∈ Z[n], (3)

so that UN = P (0, N) U0/
(∏N−1

i=0
q(i)

)
, where P (j, i) =

B(j − 1) · · ·B(i + 1)B(i). One then computes P (0, N) re-
cursively as P (0, N) = P (⌊N/2⌋ , N)P (0, ⌊N/2⌋), and the

denominator
∏N−1

i=0
q(i) in a similar fashion (but separately,

in order to avoid expensive gcd computations).
The idea of using product trees to make the most of fast

multiplication dates back at least to the seventies [4, §12.7].
The general statement below is from [12, Theorem 2.2], ex-
cept that the authors seem to have overlooked the cost of
evaluating the polynomials at the leaves of the tree.

Theorem 1 (Chudnovsky, Chudnovsky). Let u be
a P-recursive sequence over Q(i), defined by (2). Assume
that the coefficients bk(n) of (2) have no poles in N. Let d, h

denote bounds on their degrees (of numerators and denomi-
nators) and heights, and d′, h′ corresponding bounds for the
coefficients of B(n) and q(n) in (3). Assuming N ≫ s, d,
the binary splitting algorithm outlined above computes one
term uN of u in O(sωM(N(h′ + d′ log N)) log(Nh′)), that
is, O(sωM(sdN(h + log N)) log(Nh)), bit operations.

Proof sketch. Write H = h′ + d′ log N . Computing
the product tree P (0, N) takes O(sωM(NH) log N) bit op-
erations [12, §2] (see also Prop. 1 below), and the evalua-
tion of each leaf B(i) may be done in O(M(H) log d′) opera-
tions [5, §3.3]. This gives uN as a fraction that is simplified
in O(M(NH) log(NH)) operations [8, §1.6].

Now consider how (2) is rewritten into (3). With co-
efficients in Z[i] rather than Q(i), the bk(n) have height
h′′ ≤ (d + 1)h. To get B(n) and q(n), it remains to reduce
to common denominator the whole equation; hence d′ ≤ sd
and h′ ≤ s(h′′ + log s + log d). These two conversion steps
take O(M(sdh log2 d)) and O(M(d′h′ log s)) operations re-
spectively, using product trees. The assumption d, s = o(N)
allows to write H = O(sd(h + log N)) and get rid of some
terms, so that the total complexity simplifies as stated.

Since the height of uN may be as large as Ω((N +h) log N),
this result is optimal with respect to h and N , up to loga-
rithmic factors. The same algorithm works over any alge-
braic number field instead of Q(i). This is useful for eval-
uating D-finite functions “at singularities” (§4). More gen-
erally, similar complexity results hold for product tree com-
putations in torsion-free Z-algebras (or Q-algebras: we then
write A = Q ⊗Z A′ for some Z-algebra A′ and multiply inZ × A′), keeping in mind that, without basis choice, the
height of an element is defined only up to some additive
constant.

Constant-factor improvements.Several techniques per-
mit to improve the constant hidden in the O(·) of Theorem 1,
by making the computation at each node of the product tree
less expensive. We consider two models of computation.

In the FFT model, we assume that the complexity of long
multiplication decomposes as M(n) = 3F (2n)+O(n), where
F (n) is the cost of a discrete Fourier transform of size n (or
of another related linear transform, depending on the algo-
rithm). FFT-based integer multiplication algorithms adapt
to reduce the multiplication of two matrices of height n inZs×s to O(n) multiplications of matrices of height O(1), for
a total of O(s2M(n)+sωn) bit operations. This is known as
“FFT addition” [4], “computing in the FFT mode” [32], or
“FFT invariance”. A second improvement (“FFT doubling”,
attributed to R. Kramer in [4, §12.8]) is specific to the com-
putation of product trees. The observation is that, at an
internal node where operands of size n get multiplied using
three FFTs of size 2n, every second coefficient of the two
direct DFTs is already known from the level below.

The second model is black-box multiplication. There, we
may use fast multiplication formulae that trade large in-
teger multiplications for additions and multiplications by
constants. The most obvious example is that the prod-
ucts in Q(i) may be done in four integer multiplications
using Karatsuba’s formula instead of five with the naïve al-
gorithm. In general, elements of height h of an algebraic
number field of degree d may be multiplied in 2dM(h)+O(h)
bit operations using the Toom-Cook algorithm. The same
idea applies to the matrix multiplications. Most classical

matrix multiplication formulae such as Strassen’s are so-
called bilinear algorithms. Since we are working over a
commutative ring, we may use more general quadratic al-
gorithms [9, §14.1]. In particular, for all s, Waksman’s al-
gorithm [38] multiplies s × s matrices over a commutative
ring R using s2⌈s/2⌉ + (2s − 1)⌊s/2⌋ multiplications in R,
and Makarov’s [24] multiplies 3 × 3 matrices in 22 scalar
multiplications. These formulas alone or as the base case of
a Strassen scheme achieve what seems to be the best known
multiplication count for matrices of size up to 20.

Exploiting these ideas leads to the following refinement
of Theorem 1. Similar results can be stated for general Z-
algebras, using their rank and multiplicative complexity [9].

Proposition 1. Let d′ and h′ denote bounds on the de-
grees and heights (respectively) of B(n) and q(n) in Eq. (3).
As N, h′ → ∞ (s and d′ being fixed), the number of bit op-
erations needed to compute the product tree P (0, N) is at

most
(
C + o(1)

)
M

(
N(h′ + d′ log N) log(Nh′)

)
, with C =

(2s2 + 1)/6 in the FFT model, and C = (3 MM(s) + 1)/4
in the black-box model. Here MM(s) ≤ (s3 + 3s2)/2 is the
algebraic complexity of s× s matrix multiplication over Z.

Proof. Each node at the level k (level 0 being the root)
of the tree essentially requires multiplying s×s matrices with
entries in Z[i] of height Hk = N(h′ + d′ log N)/2k+1, plus
denominators of the same height. In the FFT model, this
may be done in (2s2+1)M(Hk) operations. Since we assume

M(n) = Ω(n log n), we have
∑⌈log N⌉

k=0
2kM(Hk) ≤ 1

2
M(H0)

(a remark attributed to D. Stehlé in [39]). Kramer’s trick
saves another factor 3

2
. In the black-box model, the cor-

responding cost for one node is (3 MM(s) + 1)M(Hk) with
Karatsuba’s formula. Stehlé’s argument applies again.

Note that the previous techniques save time only for dense
objects. In particular, one should not use the “fast” matrix
multiplication formulae in the few bottom levels of product
trees associated to recurrences of the form (3), since the
matrices at the leaves are companion.

Continuing on this remark, these matrices often have some
structure that is preserved by successive multiplications. For
instance, let sn =

∑n−1

k=0
uk where (un) satisfies (2). It is

easy to compute a recurrence and initial conditions for (sn)
and go on as above. However, unrolling the recurrences (2)
and sn+1 − sn = un simultaneously as

un+1

...
un+s−1

un+s

sn+1

=

1 0
. . .

...
1 0

∗ ∗ · · · ∗ 0
1 0 · · · 0 1

un

...
un+s−2

un+s−1

sn

(4)

is more efficient. Indeed, all matrices in the product tree
for the numerator of (4) then have a rightmost column of
zeros, except for the value in the lower right corner, which
is precisely the denominator. With the notation MM(s) of
Proposition 1, each product of these special matrices uses
MM(s) + s2 + s + 1 multiplications, vs. MM(s + 1) + 1 for
the dense variant. Hence the formula (4) is more efficient as
soon as MM(s + 1) −MM(s) ≥ s(s + 1), which is true both
for the naïve multiplication algorithm and for Waksman’s
algorithm (compare [39]). In practice, on Ex. 3 below, if
one puts un = sn+1 − sn in (2, 3) instead of using (4), the
computation time grows from 1.7 s to 2.7 s.

The same idea applies to any recurrence operator that
can be factored. Further examples of structure in product
trees include even and odd D-finite series (e.g., [8, §4.9.1]).
In all these cases, the naïve matrix multiplication algorithm
automatically benefits from the special shape of the problem
(because multiplications by constants have negligible cost),
while fast methods must take it into account explicitly.

Remark 1. A weakness of binary splitting is its compara-
tively large space complexity Ω(n log n). Techniques to re-
duce it are known and used by efficient implementations in
the case of recurrences of the first order [10, 17, 19, 3].

Implementation.The implementation of binary splitting in
NumGfun includes some of the tricks discussed in this sec-
tion. FFT-based techniques are currently not used because
they are not suited to implementation in the Maple language.
This implementation is exposed through two user-level func-
tions, nth_term and fnth_term, that allow to evaluate P-
recursive sequences (fnth_term replaces the final gcd by a
less expensive division and returns a floating-point result).
Additionally, gfun[rectoproc], which takes as input a re-
currence and outputs a procedure that evaluates its solution,
automatically calls the binary splitting code when relevant.
Examples 1 and 3 illustrate the use of these functions on
integer sequences and convergent series respectively.

Example 3. [7, §6.10] Repeated integration by parts of the
integral representation of Γ yields for 0 < Re(z) < 1

Γ(z) =

∞∑

n=0

e−ttn+z

z(z + 1) · · · (z + n)
+

∫ ∞

t

e−uuz−1du.

Taking t = 293, it follows that the sum
∑65000

n=0
un, where

u0 = 87e−t and (3n + 4)un+1 = 3tun, is within 10−10000 of
Γ(1/3), whence Γ(1/3) ≃ 2.67893 . . . (9990 digits) . . . 99978.
This computation takes 1.7 s.

3. HIGH-PRECISION EVALUATION OF
D-FINITE FUNCTIONS

We now recall the numerical evaluation algorithms used
in NumGfun, and discuss their implementation.

Let y(z) =
∑

n
ynzn be a D-finite series with radius of

convergence ρ at the origin. Let z ∈ Q(i) be such that |z| <
ρ and height(z) ≤ h. The sequence (ynzn) is P-recursive, so
that the binary splitting algorithm yields a fast method for
the high-precision evaluation of y(z). Here “high-precision”
means that we let the precision required for the result go to
infinity in the complexity analysis of the algorithm.

More precisely, (ynzn) is canceled by a recurrence relation
of height O(h). By Theorem 1, y(z) may hence be computed
to the precision 10−p in

O
(
M

(
N(h + log N)

)
log(Nh)

)
(5)

bit operations, where N is chosen so that |yN;(z)| ≤ 10−p,
i.e. N ∼ p/ log(ρ/|z|) if ρ < ∞, and N ∼ p/(τ log p) for
some τ if ρ =∞.

In practice, the numbers of digits of (absolute) precision
targeted in NumGfun range from the hundreds to the mil-
lions. Accuracies of this order of magnitude are useful in
some applications to number theory [12], and in heuristic
equality tests [33, §5]. It can also happen that the easiest

way to obtain a moderate-precision output involves high-
precision intermediate computations, especially when the
correctness of the result relies on pessimistic bounds.

Analytic continuation.Solutions of the differential equa-
tion (1) defined in the neighborhood of 0 extend by analytic
continuation to the universal covering of C\S, where S is the
(finite) set of singularities of the equation. D-finite functions
may be evaluated fast at any point by a numerical version of
the analytic continuation process that builds on the previous
algorithm [12]. Rewrite (1) in matrix form

Y ′(z) = A(z)Y (z), Y (z) =
(

y(i)(z)

i!

)

0≤i<r
. (6)

This choice of Y (z) induces, for all z0 ∈ C \ S, that of a
family of canonical solutions of (1) defined by

y[z0, j](z) = (z − z0)j + O
(
(z − z0)r

)
, 0 ≤ j < r,

that form a basis of the solutions of (1) in the neighborhood
of z0. Stated otherwise, the vector y[z0] = (y[z0, j])0≤j<r of
canonical solutions at z0 is the first row of the fundamental
matrix Y [z0](z) of (6) such that Y z0 = Id.

By linearity, for any path z0 → z1 in C \ S, there exists a
transition matrix Mz0→z1 that “transports initial conditions”
(and canonical solutions) along the path:

Y (z1) = Mz0→z1Y (z0), y[z0](z) = y[z1](z)Mz0→z1 . (7)

This matrix is easy to write out explicitly:

Mz0→z1 = Y [z0](z1) =
(

1

i!
y[z0, j](i)(z1)

)

0≤i,j<r
, (8)

evaluations at z1 being understood to refer to the analytic
continuation path z0 → z1. Transition matrices compose:

Mz0→z1→z2 = Mz1→z2Mz0→z1 , Mz1→z0 = M−1
z0→z1

. (9)

NumGfun provides functions to compute Mγ for a given
path γ (transition_matrix), and to evaluate the analytic
continuation of a D-finite function along a path starting at 0
(evaldiffeq). In both cases, the path provided by the user
is first subdivided into a new path z0 → z1 → · · · → zm,
zℓ ∈ Q(i), such that, for all ℓ, the point zℓ+1 lies within
the disk of convergence of the Taylor expansions at zℓ of all
solutions of (1). Using (8), approximations M̃ℓ ∈ Q(i)r×r of
Mzℓ→zℓ+1 are computed by binary splitting.

More precisely, we compute all entries of M̃ℓ at once, as
follows. For a generic solution y of (1), the coefficients un of
u(z) = y(zℓ + z) =

∑∞

n=0
unzn are canceled by a recurrence

of order s. Hence the partial sums u;n(z) of u satisfy
(

Un+1

u;n+1(z)

)

=

(

C(n)z 0
K 1

)

︸ ︷︷ ︸

B(n)

(

Un

u;n(z)

)

, (10)

where K = (1, 0, . . . , 0) and C(n) ∈ Q(n)s×s. Introducing
an indeterminate δ, we let z = zℓ+1 − zℓ + δ ∈ Q(i)[δ] and
compute B(N − 1) . . . B(0) mod δr by binary splitting (an
idea already used in [32]), for some suitable N . The upper
left blocks of the subproducts are kept factored as a power
of z times a matrix independent on z. In other words, clear-
ing denominators, the computation of each subproduct

P =
1

d

(

D · p 0
R d

)

= PhighPlow (p = numer(z)m)

is performed as D ← DhighDlow ; p ← phighplow ; R ←
plow(RhighClow) + dhighRlow ; d ← dhighdlow. The powers
of z can be computed faster, but the saving is negligible.
Applying the row submatrix R of the full product to the
matrix U0 = (1

i!
y[zℓ, j](i)(zℓ))06i<s,06j<r yields a row vector

equal to (y[zℓ, j];N (zℓ+1 + δ))06j<r + O(δr), each entry of
which is a truncated power series whose coefficients are the
entries of the corresponding column of M̃ℓ. This way of
computing M̃ℓ is roughly min(r, sω−1) times more efficient
than the fastest of the variants from [12, 32].

In the function transition_matrix, we then form the
product M̃m−1 · · · M̃0, again by binary splitting. In the case
of evaldiffeq, we compute only the first row R̃ of M̃m−1,
and we form the product R̃M̃m−2 · · · M̃0Ĩ, where Ĩ is an
approximation with coefficients in Q(i) of the vector Y (z0)
of initial conditions (or this vector itself, if it has symbolic
entries). The whole computation is done on unsimplified
fractions, controlling all errors to guarantee the final result.
Let us stress that no numerical instability occurs since all nu-
merical operations are performed on rational numbers. We
postpone the discussion of approximation errors (including
the choice of N) to §5.

Example 4. Transition matrices corresponding to paths
that “go round” exactly one singularity once are known as
local monodromy matrices. A simple example is that of the
equation (1 + z2)y′′ + 2zy′ = 0, whose solution space is gen-
erated by 1 and arctan z. Rather unsurprisingly, around i:

> transition_matrix((1+z^2)*diff(y(z),z,y(z),z)

+2*z*diff(y(z),z), y(z), [0,I+1,2*I,I-1,0], 20);

(

1.00000000000000000000 3.14159265358979323846
0 1.00000000000000000000

)

More generally, expressing them as entries of monodromy
matrices is a way to compute many mathematical constants.

Another use of analytic continuation appears in Ex. 2:
there, despite the evaluation point lying within the disk of
convergence, NumGfun performs analytic continuation along
the path 0 → −1

2
→ −3

4
→ −22

25
→ −47

50
→ −99

100
to approach

the singularity more easily (cf. [12, Prop. 3.3]).

The “bit burst” algorithm. The complexity result (5) is
quasi-optimal for h = O(log p), but becomes quadratic in p
for h = Θ(p), which is the size of the approximation z̃ ∈ Q(i)
needed to compute y(z) for arbitrary z ∈ C. This issue can
be avoided using analytic continuation to approach z along
a path z0 → z1 → · · · → zm = z̃ made of approximations
of z whose precision grow geometrically:

|zℓ+1 − zℓ| ≤ 2−2ℓ

, height(zℓ) = O(2ℓ), (11)

thus balancing h and |z|. This idea is due to Chudnovsky and
Chudnovsky [12], who called it the bit burst algorithm, and
independently to van der Hoeven with a tighter complexity
analysis [32, 37]. The following proposition improves this
analysis by a factor log log p in the case where y has a finite
radius of convergence. No similar improvement seems to
apply to entire functions.

Proposition 2. Let y be a D-finite function. One may
compute a 2−p-approximation of y at a point z ∈ Q(i) of
height O(p) in O(M(p log2 p)) bit operations.

Proof. By (5) and (11), the step zℓ → zℓ+1 of the bit-
burst algorithm takes O(M(p(2ℓ + log p) log p/2ℓ)) bit oper-
ations. Now

m∑

ℓ=0

M
(

p(2ℓ + log p)

2ℓ

)

log p ≤M
(

mn log p +

∞∑

ℓ=0

p log2 p

2ℓ

)

and m = O(log p), hence the total complexity.

Example 5. Consider the D-finite function y defined by
the following equation, picked at random:
(5

12
−

1

4
z +

19

24
z

2
−

5

24
z

3
)

y
(4) +

(
−

7

24
+

2

3
z +

13

24
z

2 +
1

12
z

3
)

y
′′′

+
(7

12
−

19

24
z +

1

8
z

2 +
1

3
z

3
)

y
′′ +

(
−

3

4
+

5

12
z +

5

6
z

2 +
1

2
z

3
)

y
′

+
(5

24
+

23

24
z +

7

8
z

2 +
1

3
z

3
)

y = 0,

y(0) =
1

24
, y

′(0) =
1

12
, y

′′(0) =
5

24
, y

′′′(0) =
5

24
.

The singular points are z ≈ 3.62 and z ≈ 0.09 ± 0.73i. By
analytic continuation (along a path 0 → πi homotopic to a
segment) followed by bit-burst evaluation, we obtain

y(πi) ≈ −0.52299...(990 digits)...53279 − 1.50272...90608i

after about 5 min. This example is among the “most gen-
eral” that NumGfun can handle. Intermediate computations
involve recurrences of order 8 and degree 17.

4. REGULAR SINGULAR POINTS
The algorithms of the previous section extend to the case

where the analytic continuation path passes through regu-
lar singular points of the differential equation [11, 12, 33].
Work is in progress to support this in NumGfun, with two
main applications in view, namely special functions (such
as Bessel functions) defined using their local behaviour at a
regular singular point, and “connection coefficients” arising
in analytic combinatorics [15, § VII.9]. We limit ourselves to
a sketchy (albeit technical) discussion.

Recall that a finite singular point z0 of a linear differential
equation with analytic coefficients is called regular when all
solutions y(z) have moderate growth y(z) = 1/(z−z0)O(1) as
z → z0 in a sector with vertex at z0, or equivalently when the
equation satisfies a formal property called Fuchs’ criterion.
The solutions in the neighborhood of z0 then have a simple
structure: for some t ∈ N, there exist linearly independent
formal solutions of the form (with z0 = 0)

y(z) = zλ

t−1∑

k=0

φk(z) logk z, λ ∈ C, φk ∈ C[[z]] (12)

in number equal to the order r of the differential equation.
Additionally, the φk converge on the open disk centered at 0
extending to the nearest singular point, so that the solu-
tions (12) in fact form a basis of analytic solutions on any
open sector with vertex at the origin contained in this disk.
(See for instance [28] for proofs and references.)

Several extensions of the method of indeterminate coef-
ficients used to obtain power series solutions at ordinary
points allow to determine the coefficients of the series φk.
We proceed to revisit Poole’s variant [28, §16] of Heffter’s
method [22, Kap. 8] using the “operator algebra point of
view” on indeterminate coefficients: a recursive formula for
the coefficients of the series expansion of a solution is ob-
tained by applying simple rewriting rules to the equation.

This formulation makes the algorithm simpler for our pur-
poses (compare [31, 11, 33]) and leads to a small complexity
improvement. It also proves helpful in error control (§6).

Since our interest lies in the D-finite case, we assume that 0
is a regular singular point of Equation (1). Letting θ =
z d

dz
, the equation rewrites as L(z, θ) · y = 0 where L is

a polynomial in two noncommutative indeterminates (and
L(z, θ) has no nontrivial left divisor in K[z]). Based on (12),
we seek solutions as formal logarithmic sums

y(z) =
∑

n∈λ+Z∑

k≥0

yn,k
logk z

k!
zn, λ ∈ C.

Let us call the double sequence y = (yn,k)n∈λ+Z,k∈N the
coefficient sequence of y. The shift operators Sn and Sk

on such double sequences are defined by Sn · y = (yn+1,k),
and Sk · y = (yn,k+1). The heart of the method lies in the
following observation.

Proposition 3. Let y(z) be a formal logarithmic sum.
The relation L(z, θ) · y = 0 holds (formally) iff the coeffi-
cient sequence y of y satisfies L(S−1

n , n + Sk) · y = 0.

Proof. The operators z and θ act on logarithmic sums

by z · y(z) =
∑

n∈λ+Z∑

k≥0
yn−1,k

logk z
k!

zn and θ · y(z) =
∑

n∈λ+Z∑

k≥0
(nyn,k +yn,k+1) logk z

k!
zn. Thus the coefficient

sequence of L(z, θ) · y is L(S−1
n , n + Sk) · y.

Assume that y(z) satisfies (1). Then L(S−1
n , n+Sk)·y = 0;

additionally, (12) implies that yn,k = 0 for k ≥ t, which
translates into St

k · y = 0. Set L(z, θ) = Q0(θ) + R(z, θ)z,
and fix n ∈ λ+Z. If Q0(n) 6= 0, then Q0(n+X) is invertible
in K(λ)[[X]], and

y = −
(
Q0(n + Sk)−1 mod St

k

)
R(S−1

n , n + Sk)S−1
n · y.

In general, let µ(n) be the multiplicity of n as a root of Q0.

Take Tn ∈ K(λ)[X] such that Tn(X)
(
X−µ(n)Q0(n + X)

)
=

1 + O(Xt) (explicitly, Tn(Sk) =
∑t−1

v=0

(
∂v

∂Xv
Xµ(n)

Q0(X)

)

X=n
Sv

k).

Then, it holds that

S
µ(n)
k · y = −Tn(Sk)R(S−1

n , n + Sk)S−1
n · y, (13)

hence the yn′,k with n′ < n determine (yn,k)k≥µ(n), while
the yn,k, k < µ(n) remain free.

Coupled with the condition yn,k = 0 for n−λ < 0 following
from (12), this implies that a solution y is characterized by
(yn,k)(n,k)∈E, where E = {(n, k) | k < µ(n)}. As in §3, this
choice of initial values induces that of canonical solutions
(at 0) y[n, k] defined by y[n, k]n,k = 1 and y[n, k]n′,k′ = 0
for (n′, k′) ∈ E \ {(n, k)}. The notion of transition matrix
extends, see [33, §4] for a detailed discussion.

Equation (13) is a “recurrence relation” that lends itself to
binary splitting. The main difference with the setting of §2 is
that the companion matrix of the “recurrence operator” now
contains truncated power series, i.e., B ∈ K(n)[[Sk]]/(St

k).

The coefficients y[u, v]n =
∑t−1

k=0
y[u, v]n,k logk z of canoni-

cal solutions may be computed fast by forming the product
B(n− 1) · · ·B(u) ∈ K(λ)[[Sk]]/(St

k) and applying it to the
initial values Yu = (0, . . . , 0, logv z)T. Compared to the al-
gorithm of [33], multiplications of power series truncated to
the order t replace multiplications of t × t submatrices, so
that our method is slightly faster. As in §3, all entries of
Mz0→z1 may (and should) be computed at once.

5. ERROR CONTROL
Performing numerical analytic continuation rigorously re-

quires a number of bounds that control the behaviour of the
function under consideration. We now describe how error
control is done in NumGfun. Some of the ideas used in this
section appear scattered in [32]–[36]. NumGfun relies almost
exclusively on a priori bounds; see [27, §5.2] for pointers to
alternative approaches, and [36] for further useful techniques,
including how to refine rough a priori bounds into better a
posteriori bounds.

We start by discussing the computation of majorant series
for the canonical solutions of the differential equation. Then
we describe how these are used to determine, on the one
hand, at which precision each transition matrix should be
computed for the final result to be correct, and on the other
hand, where to truncate the series expansions to achieve
this precision. Finally, we propose a way to limit the cost of
computing bounds in “bit burst” phases.

Remark 2. In practice, numerical errors that happen
while computing the error bounds themselves are not always
controlled, due to limited support for interval arithmetic in
Maple. However, we have taken some care to ensure that
crucial steps rely on rigorous methods.

Majorant series.A formal power series g ∈ R+[[z]] is a
majorant series of y ∈ C[[z]], which we denote by y E g, if
|yn| ≤ gn for all n. If y(z) E g(z) and ŷ(z) E ĝ(z), then

y(z) ≤ g(|z|), d
dz

y(z) E d
dz

g(z),

y + ŷ E g + ĝ, yŷ E gĝ, y ◦ ŷ E g ◦ ĝ.
(14)

We shall allow majorant series to be formal logarithmic sums
or matrices. The relation E extends in a natural way: we
write

∑

n,k
yn,kzn log zk

E
∑

n,k
gn,kzn log zk iff |yn,k| ≤

gn,k for all n and k, and Y = (yi,j) E G = (gi,j) iff Y
and G have the same format and yi,j E gi,j for all i, j. In
particular, for scalar matrices, Y E G if |yi,j | ≤ gi,j for all
i, j. The inequalities (14) still hold.

Bounds on canonical solutions.The core of the error con-
trol is a function that computes g(z) such that

∀j, y[z0, j](z0 + z) E g(z) (15)

(in the notations of §3) given Equation (1) and a point z0.
This function is called at each step of analytic continuation.

The algorithm is based on that of [27] (“SB” in what fol-
lows), designed to compute “asymptotically tight” symbolic
bounds. Run over Q(i) instead of Q, SB returns (in the
case of convergent series) a power series satisfying (15) of the
form g(z) =

∑∞

n=0
n!−τ αnφ(n)zn, where τ ∈ Q+, α ∈ Q̄,

and φ(n) = eo(n). The series g is specified by τ , α, and other
parameters of no interest here that define φ. The tightness
property means that τ and α are the best possible.

However, the setting of numerical evaluation differs from
that of symbolic bounds in several respects: (i) the issue is no
more to obtain human-readable formulae, but bounds that
are easy to evaluate; (ii) bound computations should be fast;
(iii) at regular singular points, the fundamental solutions are
logarithmic sums, not power series. For space reasons, we
only sketch the differences between SB and the variant we
use for error control.

First, we take advantage of (i) to solve (ii). The most
important change is that the parameter α is replaced by

an approximation α̃ ≥ α. This avoids computations with
algebraic numbers, the bottleneck of SB. Strictly speaking,
it also means that we are giving up the tightness of the
bound. However, in constrast with the “plain” majorant se-
ries method [33, 34, 36], we are free to take α̃ arbitrarily close
to α, since we do not use the ratio (α/α̃)n to mask subex-
ponential factors. The algorithms from [27] adapt without
difficulty. Specifically, Algorithms 3 and 4 are modified to
work with α̃ instead of α. Equality tests between “dominant
roots” (Line 9 of Algorithm 3, Line 5 of Algorithm 4) can
now be done numerically and are hence much less expensive.
As a consequence, the parameter T from §3.3 is also replaced
by an upper bound. This affects only the parameter φ(n) of
the bound, which is already pessimistic.

The issue (iii) can be dealt with too. One may compute

a series g such that y(z) E g(z)
∑t−1

k=0
logk z

k!
(with the no-

tations of §4) by modifying the choice of K in [27, §3.3]

so that
∑t−1

k=0

∣
∣
(

∂k

∂Xk
Xµ(n)

Q0(X)

)

X=n

∣
∣ ≤ K/nr , and replacing [27,

Eq. (14)] by Eq. (13) above in the reasoning.

Global error control. We now consider the issue of control-
ling how the approximations at each step of analytic con-
tinuation accumulate. Starting with a user-specified error
bound ǫ, we first set ǫ′ so that an ǫ′-approximation r̃ ∈ Q(i)
of the exact result r rounds to ⋄(r̃) ∈

⋃

n∈N 10−nZ[i] with

|⋄(r̃)− r| < ǫ. No other rounding error occur, since the rest
of the computation is done on objects with coefficients inQ(i). However, we have to choose the precision at which
to compute each factor of the product Π = R̃M̃m−1 · · · M̃0Ĩ
(in evaldiffeq, and of similar products for other analytic
continuation functions) so that |r̃ − r| < ǫ′.

As is usual for this kind of applications, we use the Frobe-
nius norm, defined for any (not necessarily square) matrix by

‖(ai,j)‖F = (
∑

i,j
|ai,j |

2)1/2. The Frobenius norm satisfies

‖AB‖F ≤ ‖A‖F‖B‖F for any matrices A, B of compatible
dimensions. If A is a square r × r matrix,

‖A‖∞ ≤ 9A92 ≤ ‖A‖F ≤ r‖A‖∞ (16)

where 9·92 is the matrix norm induced by the Euclidean
norm while ‖·‖∞ denotes the entrywise uniform norm. Most
importantly, the computation of ‖A‖F is numerically stable,
and if A has entries in Q(i), it is easy to compute a good
upper bound on ‖A‖F in floating-point arithmetic.

We bound the total error ǫΠ on Π using repeatedly the rule
‖ÃB̃−AB‖F ≤ ‖Ã‖F‖B̃−B‖F+‖Ã−A‖F‖B‖F. From there,
we compute precisions ǫA such that having ‖Ã − A‖F < ǫA

for each factor A of Π ensures that ǫΠ < ǫ′. Upper bounds on
the norms ‖Ã‖F and ‖A‖F appearing in the error estimate
are computed either from an approximate value of A (usually
Ã itself) if one is available at the time, or from a matrix G
such that A E G given by (14, 15).

Local error control. Let us turn to the computation of
individual transition matrices. We restrict to the case of
ordinary points. Given a precision ǫ determined by the
“global error control” step, our task is to choose N such that
‖M̃ −Mz0→z1‖F ≤ ǫ if M̃ is computed by truncating the en-
tries of (8) to the order N . If g satisfies (15), it suffices that

g
(i)
N;(|z1−z0|) ≤

i!
r

ǫ for all i, as can be seen from (14, 16). We
find a suitable N by dichotomic search. For the family of ma-

jorant series g used in NumGfun, the g
(i)
N;(x) are not always

easy to evaluate, so we bound them by expressions involving

only elementary functions [27, §4.2]. The basic idea, related
to the saddle-point method from asymptotic analysis, is that
if x ≥ 0, inequalities like gn;(x) ≤ (x/tn)ng(tn)(1− x/tn)−1

are asymptotically tight for suitably chosen tn.

Points of large bit-size.Computing the majorants (15) is
expensive when the point z0 has large height. This can be
fixed by working with an approximate value c of z0 to ob-
tain a bound valid in a neighborhood of c that contains z0.
This technique is useful mainly in “bit burst” phases (where,
additionally, we can reuse the same c at each step).

Assume that Y [c](c + z) E G(z) for some c ≈ z0. Since
Y [z0](z0 +z) = Y [c](c+(z0−c)+z)M−1

c→z0
by (7), it follows

that Y [z0](z0 + z) E G(|z0 − c| + z) ‖M−1
c→z0

‖1 where 1 is
a square matrix filled with ones. Now Mc→c+z = Id +O(z),
whence Mc→c+z − Id E G(z) − G(0). For |z0 − c| < η, this
implies ‖Mc→z0 − Id ‖F ≤ δ := ‖G(η) − G(0)‖F. Choosing
η small enough that δ < 1, we get ‖M−1

c→z0
‖F ≤ (1 − δ)−1.

If G was computed from (15), i.e., for G(z) =
(

1
j!

g(j)(z)
)

i,j
,

this finally gives the bound

y[z0, j](z0 + z) E
r

j! (1− δ)
g(j)(η + z),

valid for all z0 in the disk |z0 − c| < η.
Note however that simple differential equations have solu-

tions like exp(K/(1− z)) with large K. The condition δ < 1
then forces us to take c of size Ω(K). Our strategy to deal
with this issue in NumGfun is to estimate K using a point c
of size O(1) and then to choose a more precise c (as a last
resort, c = z0) based on this value if necessary.

Remark 3. If the evaluation point z is given as a program,
a similar reasoning allows to choose automatically an approx-
imation z̃ ∈ Q(i) of z such that |y(z̃)−y(z)| is below a given
error bound [32, §4.3]. In other applications, it is useful
to have bounds on transition matrices that hold uniformly
for all small enough steps in a given domain. Such bounds
may be computed from a majorant differential equation with
constant coefficients [35, §5].

6. REPEATED EVALUATIONS
Drawing plots or computing integrals numerically requires

to evaluate the same function at many points, often to a few
digits of precision only. NumGfun provides limited support
for this through the function diffeqtoproc, which takes as
input a D-finite function y, a target precision ǫ, and a list
of disks, and returns a Maple procedure that performs the
numerical evaluation of y. For each disk D = {z, |z−c| < ρ},
diffeqtoproc computes a polynomial p ∈ Q(i)[z] such that
|⋄(p(z))− y(z)| < ǫ for z ∈ D ∩Q(i), where ⋄ again denotes
rounding to complex decimal. The procedure returned by
diffeqtoproc uses the precomputed p when possible, and
falls back on calling evaldiffeq otherwise.

The approximation polynomial p is constructed as a linear
combination of truncated Taylor series of fundamental solu-
tions y[c, j], with coefficients obtained by numerical analytic
continuation from 0 to c. The way we choose expansion or-
ders is similar to the error control techniques of §5: we first
compute a bound Bcan on the fundamental solutions and
their first derivatives on the disk D. The vector Y (c) of “ini-
tial values” at c is computed to the precision ǫ′/Bcan where
ǫ′ ≤ ǫ/(2r). We also compute Bini ≥ ‖Y (c)‖F. Each y[c, j] is

expanded to an order N such that ‖y[c, j]N;‖∞,D ≤ ǫ′/Bini,
so that finally |p(z)− y(z)| ≤ ǫ for z ∈ D.

The most important feature of diffeqtoproc is that it
produces certified results. At low precisions and in the ab-
sence of singularities, we expect that interval-based numer-
ical solvers will perform better while still providing (a pos-
teriori) guarantees. Also note that our simple choice of p
is far from optimal. If approximations of smaller degree
or height are required, a natural approach is to aim for a
slightly smaller error ‖y − p‖∞,D above, and then replace p
by a polynomial p̃ for which we can bound ‖p − p̃‖∞ [36,
§6.2].

Example 6. The following plot of the function y defined by
(z−1) y′′′−z(2z−5) y′′−(4z−6) y′+z2(z−1) y with the initial
values y(0) = 2, y′(0) = 1, y′′(0) = 0 was obtained using
polynomial approximations on several disks that cover the
domain of the plot while avoiding the pole z = 1. The whole
computation takes about 9 s. Simple numerical integrators
typically fail to evaluate y beyond z = 1.

7. FINAL REMARKS
Not all of NumGfun was described in this article. The

symbolic bounds mentioned in §5 are also implemented,
with functions that compute majorant series or other kinds
of bounds on rational functions (bound_ratpoly), D-finite
functions (bound_diffeq and bound_diffeq_tail) and P-
recursive sequences (bound_rec and bound_rec_tail). This
implementation was already presented in [27].

Current work focuses on adding support for evaluation “at
regular singular points” (as outlined in §4), and improving
performance. The development version of NumGfun already
contains a second implementation of binary splitting, writ-
ten in C and called from the Maple code. In the longer
term, I plan to rewrite other parts of the package “from the
bottom up”, both for efficiency reasons and to make useful
subroutines independant of Maple.

Acknowledgements.I am grateful to my advisor, B. Salvy,
for encouraging me to conduct this work and offering many
useful comments. Thanks also to A. Benoit, F. Chyzak,
P. Giorgi, J. van der Hoeven and A. Vaugon for stimulat-
ing conversations, bug reports, and/or comments on drafts
of this article, and to the anonymous referees for helping
make this paper more readable.

This research was supported in part by the MSR-INRIA
joint research center.

8. REFERENCES
[1] J. Abad, F. J. Gómez, and J. Sesma. An algorithm to obtain

global solutions of the double confluent Heun equation. Numer.
Algorithms, 49(1-4):33–51, 2008.

[2] M. Beeler, R. W. Gosper, and R. Schroeppel. Hakmem. AI
Memo 239, MIT Artificial Intelligence Laboratory, 1972.

[3] F. Bellard. Computation of 2700 billion decimal digits of Pi
using a Desktop Computer. 2010.
http://bellard.org/pi/pi2700e9/

[4] D. J. Bernstein. Fast multiplication and its applications. In
J. Buhler and P. Stevenhagen, editors, Algorithmic Number
Theory, pages 325–384. Cambridge University Press, 2008.

[5] A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for
polynomial solutions of linear differential equations. In
ISSAC’05, pages 45–52. ACM press, 2005.

[6] R. P. Brent. The complexity of multiple-precision arithmetic.
In R. S. Anderssen and R. P. Brent, editors, The Complexity
of Computational Problem Solving, pages 126–165, 1976.

[7] R. P. Brent. A Fortran multiple-precision arithmetic package.
ACM Trans. Math. Softw., 4(1):57–70, 1978.

[8] R. P. Brent and P. Zimmermann. Modern Computer
Arithmetic. Version 0.4. 2009.

[9] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
complexity theory. Springer Verlag, 1997.

[10] H. Cheng, G. Hanrot, E. Thomé, E. Zima, and P. Zimmermann.
Time- and space-efficient evaluation of some hypergeometric
constants. In ISSAC’07. ACM press, 2007.

[11] D. V. Chudnovsky and G. V. Chudnovsky. On expansion of
algebraic functions in power and Puiseux series (I, II). J.
Complexity, 2(4):271–294, 1986; 3(1):1–25, 1987.

[12] D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra
in the service of mathematical physics and number theory. In
Computers in mathematics (Stanford, CA, 1986), pages
109–232. 1990.

[13] R. Dupont. Moyenne arithmético-géométrique, suites de

Borchardt et applications. Thèse de doctorat, École
polytechnique, Palaiseau, 2006.

[14] P. Falloon, P. Abbott, and J. Wang. Theory and computation
of spheroidal wavefunctions. J. Phys. A, 36:5477–5495, 2003.

[15] P. Flajolet and R. Sedgewick. Analytic Combinatorics.
Cambridge University Press, 2009.

[16] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and
P. Zimmermann. MPFR: A multiple-precision binary
floating-point library with correct rounding. ACM Trans.
Math. Softw., 33(2):13:1–13:15, 2007.

[17] X. Gourdon and P. Sebah. Binary splitting method, 2001.
http://numbers.computation.free.fr/

[18] T. Granlund. GMP. http://gmplib.org/

[19] B. Haible and R. B. Kreckel. CLN. http://www.ginac.de/CLN/

[20] http://ddmf.msr-inria.inria.fr/

[21] B. Haible and T. Papanikolaou. Fast multiprecision evaluation
of series of rational numbers, 1997.

[22] L. Heffter. Einleitung in die Theorie der linearen
Differentialgleichungen. Teubner, Leipzig, 1894.

[23] E. Jeandel. Évaluation rapide de fonctions hypergéométriques.
Rapport technique RT-0242, INRIA-ENS Lyon, 2000.

[24] O. M. Makarov. An algorithm for multiplying 3 × 3 matrices.
Comput. Math. Math. Phys., 26(1):179–180, 1987.

[25] L. Meunier and B. Salvy. ESF: an automatically generated
encyclopedia of special functions. In ISSAC’03, pages 199–206.
ACM Press, 2003. http://algo.inria.fr/esf/

[26] M. Mezzarobba. Génération automatique de procédures
numériques pour les fonctions D-finies. Rapport de stage,
Master parisien de recherche en informatique, 2007.

[27] M. Mezzarobba and B. Salvy. Effective bounds for P-recursive
sequences. J. Symbolic Comput., to appear. arXiv:0904.2452v2.

[28] E. G. C. Poole. Introduction to the theory of linear
differential equations. The Clarendon Press, Oxford, 1936.

[29] B. Salvy and P. Zimmermann. Gfun: A Maple package for the
manipulation of generating and holonomic functions in one
variable. ACM Trans. Math. Softw., 20(2):163–177, 1994.
http://algo.inria.fr/libraries/papers/gfun.html

[30] R. P. Stanley. Enumerative combinatorics, volume 2.
Cambridge University Press, 1999.

[31] É. Tournier. Solutions formelles d’équations différentielles.
Thèse de doctorat, Université de Grenoble, 1987.

[32] J. van der Hoeven. Fast evaluation of holonomic functions.
Theoret. Comput. Sci., 210(1):199–216, 1999.

[33] J. van der Hoeven. Fast evaluation of holonomic functions near
and in regular singularities. J. Symbolic Comput.,
31(6):717–743, 2001.

[34] J. van der Hoeven. Majorants for formal power series.
Technical Report 2003-15, Université Paris-Sud, 2003.

[35] J. van der Hoeven. Efficient accelero-summation of holonomic
functions. J. Symbolic Comput., 42(4):389–428, 2007.

http://bellard.org/pi/pi2700e9/
http://numbers.computation.free.fr/
http://gmplib.org/
http://www.ginac.de/CLN/
http://ddmf.msr-inria.inria.fr/
http://algo.inria.fr/esf/
http://algo.inria.fr/libraries/papers/gfun.html

[36] J. van der Hoeven. On effective analytic continuation.
Mathematics in Computer Science, 1(1):111–175, 2007.

[37] J. van der Hoeven. Transséries et analyse complexe effective.
Mémoire d’habilitation, Université Paris-Sud, 2007.

[38] A. Waksman. On Winograd’s algorithm for inner products.
IEEE Trans. Comput., C-19(4):360–361, 1970.

[39] P. Zimmermann. The bit-burst algorithm. Slides of a talk at
the workshop “Computing by the Numbers: Algorithms,
Precision, and Complexity” for R. Brent 60th birthday, 2006.

