16 research outputs found

    Performance Analysis of Adaptive Physical Layer Network Coding for Wireless Two-way Relaying

    Full text link
    The analysis of modulation schemes for the physical layer network-coded two way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. It was shown by Koike-Akino et. al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase. Depending on the signal set used at the end nodes, deep fades occur for a finite number of channel fade states referred as the singular fade states. The singular fade states fall into the following two classes: The ones which are caused due to channel outage and whose harmful effect cannot be mitigated by adaptive network coding are referred as the \textit{non-removable singular fade states}. The ones which occur due to the choice of the signal set and whose harmful effects can be removed by a proper choice of the adaptive network coding map are referred as the \textit{removable} singular fade states. In this paper, we derive an upper bound on the average end-to-end Symbol Error Rate (SER), with and without adaptive network coding at the relay, for a Rician fading scenario. It is shown that without adaptive network coding, at high Signal to Noise Ratio (SNR), the contribution to the end-to-end SER comes from the following error events which fall as SNR1\text{SNR}^{-1}: the error events associated with the removable singular fade states, the error events associated with the non-removable singular fade states and the error event during the BC phase. In contrast, for the adaptive network coding scheme, the error events associated with the removable singular fade states contributing to the average end-to-end SER fall as SNR2\text{SNR}^{-2} and as a result the adaptive network coding scheme provides a coding gain over the case when adaptive network coding is not used.Comment: 10 pages, 5 figure

    Physical Layer Network Coding for Two-Way Relaying with QAM

    Full text link
    The design of modulation schemes for the physical layer network-coded two way relaying scenario was studied in [1], [3], [4] and [5]. In [7] it was shown that every network coding map that satisfies the exclusive law is representable by a Latin Square and conversely, and this relationship can be used to get the network coding maps satisfying the exclusive law. But, only the scenario in which the end nodes use MM-PSK signal sets is addressed in [7] and [8]. In this paper, we address the case in which the end nodes use MM-QAM signal sets. In a fading scenario, for certain channel conditions γejθ\gamma e^{j \theta}, termed singular fade states, the MA phase performance is greatly reduced. By formulating a procedure for finding the exact number of singular fade states for QAM, we show that square QAM signal sets give lesser number of singular fade states compared to PSK signal sets. This results in superior performance of MM-QAM over MM-PSK. It is shown that the criterion for partitioning the complex plane, for the purpose of using a particular network code for a particular fade state, is different from that used for MM-PSK. Using a modified criterion, we describe a procedure to analytically partition the complex plane representing the channel condition. We show that when MM-QAM (M>4M >4) signal set is used, the conventional XOR network mapping fails to remove the ill effects of γejθ=1\gamma e^{j \theta}=1, which is a singular fade state for all signal sets of arbitrary size. We show that a doubly block circulant Latin Square removes this singular fade state for MM-QAM.Comment: 13 pages, 14 figures, submitted to IEEE Trans. Wireless Communications. arXiv admin note: substantial text overlap with arXiv:1203.326

    Distributed Space Time Coding for Wireless Two-way Relaying

    Full text link
    We consider the wireless two-way relay channel, in which two-way data transfer takes place between the end nodes with the help of a relay. For the Denoise-And-Forward (DNF) protocol, it was shown by Koike-Akino et. al. that adaptively changing the network coding map used at the relay greatly reduces the impact of Multiple Access interference at the relay. The harmful effect of the deep channel fade conditions can be effectively mitigated by proper choice of these network coding maps at the relay. Alternatively, in this paper we propose a Distributed Space Time Coding (DSTC) scheme, which effectively removes most of the deep fade channel conditions at the transmitting nodes itself without any CSIT and without any need to adaptively change the network coding map used at the relay. It is shown that the deep fades occur when the channel fade coefficient vector falls in a finite number of vector subspaces of C2\mathbb{C}^2, which are referred to as the singular fade subspaces. DSTC design criterion referred to as the \textit{singularity minimization criterion} under which the number of such vector subspaces are minimized is obtained. Also, a criterion to maximize the coding gain of the DSTC is obtained. Explicit low decoding complexity DSTC designs which satisfy the singularity minimization criterion and maximize the coding gain for QAM and PSK signal sets are provided. Simulation results show that at high Signal to Noise Ratio, the DSTC scheme provides large gains when compared to the conventional Exclusive OR network code and performs slightly better than the adaptive network coding scheme proposed by Koike-Akino et. al.Comment: 27 pages, 4 figures, A mistake in the proof of Proposition 3 given in Appendix B correcte

    Wireless Network-Coded Accumulate–Compute-and-Forward Two-Way Relaying

    Full text link

    Wireless Network-Coded Three-Way Relaying Using Latin Cubes

    Full text link
    The design of modulation schemes for the physical layer network-coded three-way wireless relaying scenario is considered. The protocol employs two phases: Multiple Access (MA) phase and Broadcast (BC) phase with each phase utilizing one channel use. For the two-way relaying scenario, it was observed by Koike-Akino et al. \cite{KPT}, that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called \textit{exclusive law}. This paper does the equivalent for the three-way relaying scenario. We show that when the three users transmit points from the same 4-PSK constellation, every such network coding map that satisfies the exclusive law can be represented by a Latin Cube of Second Order. The network code map used by the relay for the BC phase is explicitly obtained and is aimed at reducing the effect of interference at the MA stage.Comment: 13 Pages, 16 Figures. Some mistakes in the previous version have been fixe

    On robustness of physical layer network coding to pollution attack

    Get PDF

    On Non-Binary Constellations for Channel Encoded Physical Layer Network Coding

    Get PDF
    This thesis investigates channel-coded physical layer network coding, in which the relay directly transforms the noisy superimposed channel-coded packets received from the two end nodes, to the network-coded combination of the source packets. This is in contrast to the traditional multiple-access problem, in which the goal is to obtain each message explicitly at the relay. Here, the end nodes AA and BB choose their symbols, SAS_A and SBS_B, from a small non-binary field, F\mathbb{F}, and use non-binary PSK constellation mapper during the transmission phase. The relay then directly decodes the network-coded combination aSA+bSB{aS_A+bS_B} over F\mathbb{F} from the noisy superimposed channel-coded packets received from two end nodes. Trying to obtain SAS_A and SBS_B explicitly at the relay is overly ambitious when the relay only needs aSB+bSBaS_B+bS_B. For the binary case, the only possible network-coded combination, SA+SB{S_A+S_B} over the binary field, does not offer the best performance in several channel conditions. The advantage of working over non-binary fields is that it offers the opportunity to decode according to multiple decoding coefficients (a,b)(a,b). As only one of the network-coded combinations needs to be successfully decoded, a key advantage is then a reduction in error probability by attempting to decode against all choices of decoding coefficients. In this thesis, we compare different constellation mappers and prove that not all of them have distinct performance in terms of frame error rate. Moreover, we derive a lower bound on the frame error rate performance of decoding the network-coded combinations at the relay. Simulation results show that if we adopt concatenated Reed-Solomon and convolutional coding or low density parity check codes at the two end nodes, our non-binary constellations can outperform the binary case significantly in the sense of minimizing the frame error rate and, in particular, the ternary constellation has the best frame error rate performance among all considered cases
    corecore