We consider the wireless two-way relay channel, in which two-way data
transfer takes place between the end nodes with the help of a relay. For the
Denoise-And-Forward (DNF) protocol, it was shown by Koike-Akino et. al. that
adaptively changing the network coding map used at the relay greatly reduces
the impact of Multiple Access interference at the relay. The harmful effect of
the deep channel fade conditions can be effectively mitigated by proper choice
of these network coding maps at the relay. Alternatively, in this paper we
propose a Distributed Space Time Coding (DSTC) scheme, which effectively
removes most of the deep fade channel conditions at the transmitting nodes
itself without any CSIT and without any need to adaptively change the network
coding map used at the relay. It is shown that the deep fades occur when the
channel fade coefficient vector falls in a finite number of vector subspaces of
C2, which are referred to as the singular fade subspaces. DSTC
design criterion referred to as the \textit{singularity minimization criterion}
under which the number of such vector subspaces are minimized is obtained.
Also, a criterion to maximize the coding gain of the DSTC is obtained. Explicit
low decoding complexity DSTC designs which satisfy the singularity minimization
criterion and maximize the coding gain for QAM and PSK signal sets are
provided. Simulation results show that at high Signal to Noise Ratio, the DSTC
scheme provides large gains when compared to the conventional Exclusive OR
network code and performs slightly better than the adaptive network coding
scheme proposed by Koike-Akino et. al.Comment: 27 pages, 4 figures, A mistake in the proof of Proposition 3 given in
Appendix B correcte