8 research outputs found

    Algorithm Diversity for Resilient Systems

    Full text link
    Diversity can significantly increase the resilience of systems, by reducing the prevalence of shared vulnerabilities and making vulnerabilities harder to exploit. Work on software diversity for security typically creates variants of a program using low-level code transformations. This paper is the first to study algorithm diversity for resilience. We first describe how a method based on high-level invariants and systematic incrementalization can be used to create algorithm variants. Executing multiple variants in parallel and comparing their outputs provides greater resilience than executing one variant. To prevent different parallel schedules from causing variants' behaviors to diverge, we present a synchronized execution algorithm for DistAlgo, an extension of Python for high-level, precise, executable specifications of distributed algorithms. We propose static and dynamic metrics for measuring diversity. An experimental evaluation of algorithm diversity combined with implementation-level diversity for several sequential algorithms and distributed algorithms shows the benefits of algorithm diversity

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Assurance of Distributed Algorithms and Systems: Runtime Checking of Safety and Liveness

    Full text link
    This paper presents a general framework and methods for complete programming and checking of distributed algorithms at a high-level, as in pseudocode languages, but precisely specified and directly executable, as in formal specification languages and practical programming languages, respectively. The checking framework, as well as the writing of distributed algorithms and specification of their safety and liveness properties, use DistAlgo, a high-level language for distributed algorithms. We give a complete executable specification of the checking framework, with a complete example algorithm and example safety and liveness properties.Comment: Small fixes to improve property specifications, including improvements not in the RV 2020 final versio

    IceDust: Incremental and Eventual Computation of Derived Values in Persistent Object Graphs

    Get PDF
    Derived values are values calculated from base values. They can be expressed in object-oriented languages by means of getters calculating the derived value, and in relational or logic databases by means of (materialized) views. However, switching to a different calculation strategy (for example caching) in object-oriented programming requires invasive code changes, and the databases limit expressiveness by disallowing recursive aggregation. In this paper, we present IceDust, a data modeling language for expressing derived attribute values without committing to a calculation strategy. IceDust provides three strategies for calculating derived values in persistent object graphs: Calculate-on-Read, Calculate-on-Write, and Calculate-Eventually. We have developed a path-based abstract interpretation that provides static dependency analysis to generate code for these strategies. Benchmarks show that different strategies perform better in different scenarios. In addition we have conducted a case study that suggests that derived value calculations of systems used in practice can be expressed in IceDust

    Integrating Logic Rules with Everything Else, Seamlessly

    Full text link
    This paper presents a language, Alda, that supports all of logic rules, sets, functions, updates, and objects as seamlessly integrated built-ins. The key idea is to support predicates in rules as set-valued variables that can be used and updated in any scope, and support queries using rules as either explicit or implicit automatic calls to an inference function. We have defined a formal semantics of the language, implemented a prototype compiler that builds on an object-oriented language that supports concurrent and distributed programming and on an efficient logic rule system, and successfully used the language and implementation on benchmarks and problems from a wide variety of application domains. We describe the compilation method and results of experimental evaluation.Comment: To be published in Theory and Practice of Logic Programming, Special issue for selected papers from 39nd International Conference on Logic Programming. arXiv admin note: substantial text overlap with arXiv:2205.1520

    Demand-driven incremental object queries

    No full text
    corecore