4 research outputs found

    Demand-Independent Optimal Tolls

    Get PDF
    3sìWardrop equilibria in nonatomic congestion games are in general inefficient as they do not induce an optimal flow that minimizes the total travel time. Network tolls are a prominent and popular way to induce an optimum flow in equilibrium. The classical approach to find such tolls is marginal cost pricing which requires the exact knowledge of the demand on the network. In this paper, we investigate under which conditions demand-independent optimum tolls exist that induce the system optimum flow for any travel demand in the network. We give several characterizations for the existence of such tolls both in terms of the cost structure and the network structure of the game. Specifically we show that demand-independent optimum tolls exist if and only if the edge cost functions are shifted monomials as used by the Bureau of Public Roads. Moreover, non-negative demand-independent optimum tolls exist when the network is a directed acyclic multi-graph. Finally, we show that any network with a single origin-destination pair admits demand-independent optimum tolls that, although not necessarily non-negative, satisfy a budget constraint.openopenRiccardo Colini-Baldeschi; Max Klimm; Marco ScarsiniCOLINI BALDESCHI, Riccardo; Klimm, Max; Scarsini, Marc

    The Price of Anarchy in Routing Games as a Function of the Demand

    Get PDF
    Most of the literature on the price of anarchy has focused on worst-case bounds for specific classes of games, such as routing games or more general congestion games. Recently, the price of anarchy in routing games has been studied as a function of the traffic demand, providing asymptotic results in light and heavy traffic. In this paper we study the price of anarchy in nonatomic routing games in the intermediate region of the demand. We begin by establishing some smoothness properties of Wardrop equilibria and social optima for general smooth costs. In the case of affine costs we show that the equilibrium is piecewise linear, with break points at the demand levels at which the set of active paths changes. We prove that the number of such break points is finite, although it can be exponential in the size of the network. Exploiting a scaling law between the equilibrium and the social optimum, we derive a similar behavior for the optimal flows. We then prove that in any interval between break points the price of anarchy is smooth and it is either monotone, or unimodal with a minimum attained on the interior of the interval. We deduce that for affine costs the maximum of the price of anarchy can only occur at the break points. For general costs we provide counterexamples showing that the set of break points is not always finite.Comment: 22 pages, 6 figure

    The price of anarchy in routing games as a function of the demand

    Get PDF
    The price of anarchy has become a standard measure of the efficiency of equilibria in games. Most of the literature in this area has focused on establishing worst-case bounds for specific classes of games, such as routing games or more general congestion games. Recently, the price of anarchy in routing games has been studied as a function of the traffic demand, providing asymptotic results in light and heavy traffic. The aim of this paper is to study the price of anarchy in nonatomic routing games in the intermediate region of the demand. To achieve this goal, we begin by establishing some smoothness properties of Wardrop equilibria and social optima for general smooth costs. In the case of affine costs we show that the equilibrium is piecewise linear, with break points at the demand levels at which the set of active paths changes. We prove that the number of such break points is finite, although it can be exponential in the size of the network. Exploiting a scaling law between the equilibrium and the social optimum, we derive a similar behavior for the optimal flows. We then prove that in any interval between break points the price of anarchy is smooth and it is either monotone (decreasing or increasing) over the full interval, or it decreases up to a certain minimum point in the interior of the interval and increases afterwards. We deduce that for affine costs the maximum of the price of anarchy can only occur at the break points. For general costs we provide counterexamples showing that the set of break points is not always finite
    corecore