1,109 research outputs found

    Making On-Demand Routing Efficient with Route-Request Aggregation

    Full text link
    In theory, on-demand routing is very attractive for mobile ad hoc networks (MANET), because it induces signaling only for those destinations for which there is data traffic. However, in practice, the signaling overhead of existing on-demand routing protocols becomes excessive as the rate of topology changes increases due to mobility or other causes. We introduce the first on-demand routing approach that eliminates the main limitation of on-demand routing by aggregating route requests (RREQ) for the same destinations. The approach can be applied to any existing on-demand routing protocol, and we introduce the Ad-hoc Demand-Aggregated Routing with Adaptation (ADARA) as an example of how RREQ aggregation can be used. ADARA is compared to AODV and OLSR using discrete-event simulations, and the results show that aggregating RREQs can make on-demand routing more efficient than existing proactive or on-demand routing protocols

    An Overview of Mobile Ad Hoc Networks for the Existing Protocols and Applications

    Full text link
    Mobile Ad Hoc Network (MANET) is a collection of two or more devices or nodes or terminals with wireless communications and networking capability that communicate with each other without the aid of any centralized administrator also the wireless nodes that can dynamically form a network to exchange information without using any existing fixed network infrastructure. And it's an autonomous system in which mobile hosts connected by wireless links are free to be dynamically and some time act as routers at the same time, and we discuss in this paper the distinct characteristics of traditional wired networks, including network configuration may change at any time, there is no direction or limit the movement and so on, and thus needed a new optional path Agreement (Routing Protocol) to identify nodes for these actions communicate with each other path, An ideal choice way the agreement should not only be able to find the right path, and the Ad Hoc Network must be able to adapt to changing network of this type at any time. and we talk in details in this paper all the information of Mobile Ad Hoc Network which include the History of ad hoc, wireless ad hoc, wireless mobile approaches and types of mobile ad Hoc networks, and then we present more than 13 types of the routing Ad Hoc Networks protocols have been proposed. In this paper, the more representative of routing protocols, analysis of individual characteristics and advantages and disadvantages to collate and compare, and present the all applications or the Possible Service of Ad Hoc Networks.Comment: 24 Pages, JGraph-Hoc Journa

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    Routing efficiency in wireless sensor-actor networks considering semi-automated architecture

    Get PDF
    Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table
    • …
    corecore