1,480 research outputs found

    A New Method of User Association in Wireless Mesh Networks

    Get PDF
    The IEEE 802.11 based wireless mesh networks (WMNs) are becoming the promising technology to provide last-mile broadband Internet access to the users. In order to access the Internet through the pre-deployed WMN, the user has to associate with one of the access points (APs) present in the network. In WMN, it is very common that the user device can have multiple APs in its vicinity. Since the user performance majorly depends on the associated AP, how to select the best AP is always remaining as a challenging research problem in WMN. The traditional method of AP selection is based on received signal strength (RSS) and it is proven inefficient in the literature as the method does not consider AP load, channel conditions, etc. This paper proposes a new method of user association in WMN such that the user selects the AP based on achievable end-to-end throughput measured in the presence of other interfering APs. The proposed association metric is independent of routing protocol and routing metric used in WMN. The simulation results show that our method outperforms the RSS based AP selection method in WMN

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Cell Selection in Wireless Two-Tier Networks: A Context-Aware Matching Game

    Full text link
    The deployment of small cell networks is seen as a major feature of the next generation of wireless networks. In this paper, a novel approach for cell association in small cell networks is proposed. The proposed approach exploits new types of information extracted from the users' devices and environment to improve the way in which users are assigned to their serving base stations. Examples of such context information include the devices' screen size and the users' trajectory. The problem is formulated as a matching game with externalities and a new, distributed algorithm is proposed to solve this game. The proposed algorithm is shown to reach a stable matching whose properties are studied. Simulation results show that the proposed context-aware matching approach yields significant performance gains, in terms of the average utility per user, when compared with a classical max-SINR approach.Comment: 11 pages, 11 figures, Journal article in ICST Wireless Spectrum, 201

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    QUALITY-OF-SERVICE PROVISIONING FOR SMART CITY APPLICATIONS USING SOFTWARE-DEFINED NETWORKING

    Get PDF
    In the current world, most cities have WiFi Access Points (AP) in every nook and corner. Hence upraising these cities to the status of a smart city is a more easily achievable task than before. Internet-of-Things (IoT) connections primarily use WiFi standards to form the veins of a smart city. Unfortunately, this vast potential of WiFi technology in the genesis of smart cities is somehow compromised due to its failure in meeting unique Quality-of-Service (QoS) demands of smart city applications. Out of the following QoS factors; transmission link bandwidth, packet transmission delay, jitter, and packet loss rate, not all applications call for the all of the factors at the same time. Since smart city is a pool of drastically unrelated services, this variable demand can actually be advantageous to optimize the network performance. This thesis work is an attempt to achieve one of those QoS demands, namely packet delivery latency. Three algorithms are developed to alleviate traffic load imbalance at APs so as to reduce packet forwarding delay. Software-Defined Networking (SDN) is making its way in the network world to be of great use and practicality. The algorithms make use of SDN features to control the connections to APs in order to achieve the delay requirements of smart city services. Real hardware devices are used to imitate a real-life scenario of citywide coverage consisting of WiFi devices and APs that are currently available in the market with neither of those having any additional requirements such as support for specific roaming protocol, running a software agent or sending probe packets. Extensive hardware experimentation proves the efficacy of the proposed algorithms
    • …
    corecore