33 research outputs found

    Polynomials with the half-plane property and matroid theory

    Get PDF
    A polynomial f is said to have the half-plane property if there is an open half-plane H, whose boundary contains the origin, such that f is non-zero whenever all the variables are in H. This paper answers several open questions regarding multivariate polynomials with the half-plane property and matroid theory. * We prove that the support of a multivariate polynomial with the half-plane property is a jump system. This answers an open question posed by Choe, Oxley, Sokal and Wagner and generalizes their recent result claiming that the same is true whenever the polynomial is also homogeneous. * We characterize multivariate multi-affine polynomial with real coefficients that have the half-plane property (with respect to the upper half-plane) in terms of inequalities. This is used to answer two open questions posed by Choe and Wagner regarding strongly Rayleigh matroids. * We prove that the Fano matroid is not the support of a polynomial with the half-plane property. This is the first instance of a matroid which does not appear as the support of a polynomial with the half-plane property and answers a question posed by Choe et al. We also discuss further directions and open problems.Comment: 17 pages. To appear in Adv. Mat

    Rank functions and invariants of delta-matroids

    Full text link
    In this note, we give a rank function axiomatization for delta-matroids and study the corresponding rank generating function. We relate an evaluation of the rank generating function to the number of independent sets of the delta-matroid, and we prove a log-concavity result for that evaluation using the theory of Lorentzian polynomials

    Characterizations of the set of integer points in an integral bisubmodular polyhedron

    Full text link
    In this note, we provide two characterizations of the set of integer points in an integral bisubmodular polyhedron. Our characterizations do not require the assumption that a given set satisfies the hole-freeness, i.e., the set of integer points in its convex hull coincides with the original set. One is a natural multiset generalization of the exchange axiom of a delta-matroid, and the other comes from the notion of the tangent cone of an integral bisubmodular polyhedron.Comment: 9 page

    Signed ring families and signed posets

    Get PDF
    The one-to-one correspondence between finite distributive lattices and finite partially ordered sets (posets) is a well-known theorem of G. Birkhoff. This implies a nice representation of any distributive lattice by its corresponding poset, where the size of the former (distributive lattice) is often exponential in the size of the underlying set of the latter (poset). A lot of engineering and economic applications bring us distributive lattices as a ring family of sets which is closed with respect to the set union and intersection. When it comes to a ring family of sets, the underlying set is partitioned into subsets (or components) and we have a poset structure on the partition. This is a set-theoretical variant of the Birkhoff theorem revealing the correspondence between finite ring families and finite posets on partitions of the underlying sets, which was pursued by Masao Iri around 1978, especially concerned with what is called the principal partition of discrete systems such as graphs, matroids, and polymatroids. In the present paper we investigate a signed-set version of the Birkhoff-Iri decomposition in terms of signed ring family, which corresponds to Reiner's result on signed posets, a signed counterpart of the Birkhoff theorem. We show that given a signed ring family, we have a signed partition of the underlying set together with a signed poset on the signed partition which represents the given signed ring family. This representation is unique up to certain reflections

    Generalized roof duality and bisubmodular functions

    Full text link
    Consider a convex relaxation f^\hat f of a pseudo-boolean function ff. We say that the relaxation is {\em totally half-integral} if f^(x)\hat f(x) is a polyhedral function with half-integral extreme points xx, and this property is preserved after adding an arbitrary combination of constraints of the form xi=xjx_i=x_j, xi=1−xjx_i=1-x_j, and xi=γx_i=\gamma where \gamma\in\{0, 1, 1/2} is a constant. A well-known example is the {\em roof duality} relaxation for quadratic pseudo-boolean functions ff. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f^\hat f by establishing a one-to-one correspondence with {\em bisubmodular functions}. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality.Comment: 14 pages. Shorter version to appear in NIPS 201

    A Min-Max . . . Functions and Its Implications

    Get PDF
    A. Huber and V. Kolmogorov (ISCO 2012) introduced a concept of k-submodular function as a generalization of ordinary submodular (set) functions and bisubmodular functions and obtained a min-max theorem for minimization of k-submodular functions. Also F. Kuivinen (2011) considered submodular functions on (product lattices of) diamonds and showed a min-max theorem for minimization of submodular functions on diamonds. In the present paper we consider a common generalization of k-submodular functions and submodular functions on diamonds, which we call a transversal submodular function (or a t-submodular function, for short). We show a min-max theorem for minimization of t-submodular functions in terms of a new norm composed of ℓ1 and ℓ ∞ norms. This reveals a relationship between the obtained min-max theorem and that for minimization of ordinary submodular set functions due to J. Edmonds (1970). We also show how our min-max theorem for t-submodular functions can be used to prove the min-max theorem for k-submodular functions by Huber and Kolmogorov and that for submodular functions on diamonds by Kuivinen. Moreover, we show a counterexample to a characterization, given by Huber and Kolmogorov (ISCO 2012), of extreme points of the k-submodular polyhedron and make it a correct one by fixing a flaw therein

    Half-integrality, LP-branching and FPT Algorithms

    Full text link
    A recent trend in parameterized algorithms is the application of polytope tools (specifically, LP-branching) to FPT algorithms (e.g., Cygan et al., 2011; Narayanaswamy et al., 2012). However, although interesting results have been achieved, the methods require the underlying polytope to have very restrictive properties (half-integrality and persistence), which are known only for few problems (essentially Vertex Cover (Nemhauser and Trotter, 1975) and Node Multiway Cut (Garg et al., 1994)). Taking a slightly different approach, we view half-integrality as a \emph{discrete} relaxation of a problem, e.g., a relaxation of the search space from {0,1}V\{0,1\}^V to {0,1/2,1}V\{0,1/2,1\}^V such that the new problem admits a polynomial-time exact solution. Using tools from CSP (in particular Thapper and \v{Z}ivn\'y, 2012) to study the existence of such relaxations, we provide a much broader class of half-integral polytopes with the required properties, unifying and extending previously known cases. In addition to the insight into problems with half-integral relaxations, our results yield a range of new and improved FPT algorithms, including an O∗(∣Σ∣2k)O^*(|\Sigma|^{2k})-time algorithm for node-deletion Unique Label Cover with label set Σ\Sigma and an O∗(4k)O^*(4^k)-time algorithm for Group Feedback Vertex Set, including the setting where the group is only given by oracle access. All these significantly improve on previous results. The latter result also implies the first single-exponential time FPT algorithm for Subset Feedback Vertex Set, answering an open question of Cygan et al. (2012). Additionally, we propose a network flow-based approach to solve some cases of the relaxation problem. This gives the first linear-time FPT algorithm to edge-deletion Unique Label Cover.Comment: Added results on linear-time FPT algorithms (not present in SODA paper
    corecore