3,114 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    La traduzione specializzata all’opera per una piccola impresa in espansione: la mia esperienza di internazionalizzazione in cinese di Bioretics© S.r.l.

    Get PDF
    Global markets are currently immersed in two all-encompassing and unstoppable processes: internationalization and globalization. While the former pushes companies to look beyond the borders of their country of origin to forge relationships with foreign trading partners, the latter fosters the standardization in all countries, by reducing spatiotemporal distances and breaking down geographical, political, economic and socio-cultural barriers. In recent decades, another domain has appeared to propel these unifying drives: Artificial Intelligence, together with its high technologies aiming to implement human cognitive abilities in machinery. The “Language Toolkit – Le lingue straniere al servizio dell’internazionalizzazione dell’impresa” project, promoted by the Department of Interpreting and Translation (ForlĂŹ Campus) in collaboration with the Romagna Chamber of Commerce (ForlĂŹ-Cesena and Rimini), seeks to help Italian SMEs make their way into the global market. It is precisely within this project that this dissertation has been conceived. Indeed, its purpose is to present the translation and localization project from English into Chinese of a series of texts produced by Bioretics© S.r.l.: an investor deck, the company website and part of the installation and use manual of the Aliquis© framework software, its flagship product. This dissertation is structured as follows: Chapter 1 presents the project and the company in detail; Chapter 2 outlines the internationalization and globalization processes and the Artificial Intelligence market both in Italy and in China; Chapter 3 provides the theoretical foundations for every aspect related to Specialized Translation, including website localization; Chapter 4 describes the resources and tools used to perform the translations; Chapter 5 proposes an analysis of the source texts; Chapter 6 is a commentary on translation strategies and choices

    Accurate quantum transport modelling and epitaxial structure design of high-speed and high-power In0.53Ga0.47As/AlAs double-barrier resonant tunnelling diodes for 300-GHz oscillator sources

    Get PDF
    Terahertz (THz) wave technology is envisioned as an appealing and conceivable solution in the context of several potential high-impact applications, including sixth generation (6G) and beyond consumer-oriented ultra-broadband multi-gigabit wireless data-links, as well as highresolution imaging, radar, and spectroscopy apparatuses employable in biomedicine, industrial processes, security/defence, and material science. Despite the technological challenges posed by the THz gap, recent scientific advancements suggest the practical viability of THz systems. However, the development of transmitters (Tx) and receivers (Rx) based on compact semiconductor devices operating at THz frequencies is urgently demanded to meet the performance requirements calling from emerging THz applications. Although several are the promising candidates, including high-speed III-V transistors and photo-diodes, resonant tunnelling diode (RTD) technology offers a compact and high performance option in many practical scenarios. However, the main weakness of the technology is currently represented by the low output power capability of RTD THz Tx, which is mainly caused by the underdeveloped and non-optimal device, as well as circuit, design implementation approaches. Indeed, indium phosphide (InP) RTD devices can nowadays deliver only up to around 1 mW of radio-frequency (RF) power at around 300 GHz. In the context of THz wireless data-links, this severely impacts the Tx performance, limiting communication distance and data transfer capabilities which, at the current time, are of the order of few tens of gigabit per second below around 1 m. However, recent research studies suggest that several milliwatt of output power are required to achieve bit-rate capabilities of several tens of gigabits per second and beyond, and to reach several metres of communication distance in common operating conditions. Currently, the shortterm target is set to 5−10 mW of output power at around 300 GHz carrier waves, which would allow bit-rates in excess of 100 Gb/s, as well as wireless communications well above 5 m distance, in first-stage short-range scenarios. In order to reach it, maximisation of the RTD highfrequency RF power capability is of utmost importance. Despite that, reliable epitaxial structure design approaches, as well as accurate physical-based numerical simulation tools, aimed at RF power maximisation in the 300 GHz-band are lacking at the current time. This work aims at proposing practical solutions to address the aforementioned issues. First, a physical-based simulation methodology was developed to accurately and reliably simulate the static current-voltage (IV ) characteristic of indium gallium arsenide/aluminium arsenide (In-GaAs/AlAs) double-barrier RTD devices. The approach relies on the non-equilibrium Green’s function (NEGF) formalism implemented in Silvaco Atlas technology computer-aided design (TCAD) simulation package, requires low computational budget, and allows to correctly model In0.53Ga0.47As/AlAs RTD devices, which are pseudomorphically-grown on lattice-matched to InP substrates, and are commonly employed in oscillators working at around 300 GHz. By selecting the appropriate physical models, and by retrieving the correct materials parameters, together with a suitable discretisation of the associated heterostructure spatial domain through finite-elements, it is shown, by comparing simulation data with experimental results, that the developed numerical approach can reliably compute several quantities of interest that characterise the DC IV curve negative differential resistance (NDR) region, including peak current, peak voltage, and voltage swing, all of which are key parameters in RTD oscillator design. The demonstrated simulation approach was then used to study the impact of epitaxial structure design parameters, including those characterising the double-barrier quantum well, as well as emitter and collector regions, on the electrical properties of the RTD device. In particular, a comprehensive simulation analysis was conducted, and the retrieved output trends discussed based on the heterostructure band diagram, transmission coefficient energy spectrum, charge distribution, and DC current-density voltage (JV) curve. General design guidelines aimed at enhancing the RTD device maximum RF power gain capability are then deduced and discussed. To validate the proposed epitaxial design approach, an In0.53Ga0.47As/AlAs double-barrier RTD epitaxial structure providing several milliwatt of RF power was designed by employing the developed simulation methodology, and experimentally-investigated through the microfabrication of RTD devices and subsequent high-frequency characterisation up to 110 GHz. The analysis, which included fabrication optimisation, reveals an expected RF power performance of up to around 5 mW and 10 mW at 300 GHz for 25 ÎŒm2 and 49 ÎŒm2-large RTD devices, respectively, which is up to five times higher compared to the current state-of-the-art. Finally, in order to prove the practical employability of the proposed RTDs in oscillator circuits realised employing low-cost photo-lithography, both coplanar waveguide and microstrip inductive stubs are designed through a full three-dimensional electromagnetic simulation analysis. In summary, this work makes and important contribution to the rapidly evolving field of THz RTD technology, and demonstrates the practical feasibility of 300-GHz high-power RTD devices realisation, which will underpin the future development of Tx systems capable of the power levels required in the forthcoming THz applications

    30th European Congress on Obesity (ECO 2023)

    Get PDF
    This is the abstract book of 30th European Congress on Obesity (ECO 2023
    • 

    corecore