5 research outputs found

    UAV Aided Data Collection for Wildlife Monitoring using Cache-enabled Mobile Ad-hoc Wireless Sensor Nodes

    Get PDF
    Unmanned aerial vehicle (UAV) assisted data collection is not a new concept and has been used in various mobile ad hoc networks. In this paper, we propose a caching assisted scheme alternative to routing in MANETs for the purpose of wildlife monitoring. Rather than deploying a routing protocol, data is collected and transported to and from a base station using a UAV. Although some literature exists on such an approach, we propose the use of intermediate caching between the mobile nodes and compare it to a baseline scenario where no caching is used. The paper puts forward our communication design where we have simulated the movement of multiple mobile sensor nodes in a field that move according to the Levy walk model imitating wildlife animal foraging and a UAV that makes regular trips across the field to collect data from them. The unmanned aerial vehicle can collect data not only from the current node it is communicating with but also data of other nodes that this node came into contact with. Simulations show that exchanging cached data is highly advantages as the drone can indirectly communicate with many more mobile nodes

    Multi-channel Distributed MAC protocol for WSN-based wildlife monitoring

    Get PDF
    International audienceSeveral wild animal species are endangered by poaching. As a solution, deploying wireless sensors on animals able to send regular messages and also alert messages has been envisaged recently by several authorities and foundations. In that context, this paper proposes WildMAC, a multichannel, multihop wireless communication protocol for these specific wireless sensor networks that have to collect data from unknown large areas with different QoS requirements. WildMAC is a TDMA based MAC protocol that leverages long range communication properties to propose an efficient data collection mean. Its performance evaluation shows it meets QoS requirements

    Delay-Tolerant Networking for Long-Term Animal Tracking

    No full text
    Enabling Internet connectivity for mobile objects that do not have a permanent home or regular movements is a challenge due to their varying energy budget, intermittent wireless connectivity, and inaccessibility. We present a hardware and software framework that offers robust data collection, adaptive execution of sensing tasks, and flexible remote reconfiguration of devices deployed on nomadic mobile objects such as animals. The framework addresses the overall complexity through a multitier architecture with low-Tier devices operating on a tight energy-harvesting budget and high-Tier cloud services offering seamless delay-Tolerant presentation of data to end users. Based on our multiyear experience of applying this framework to animal tracking and monitoring applications, we present the main challenges that we have encountered, the design of software building blocks that address these challenges, and examples of the data we collected on flying foxes
    corecore