333 research outputs found

    Performance of ad hoc networks with two-hop relay routing and limited packet lifetime (extended version)

    Get PDF
    We consider a mobile ad hoc network consisting of three types of nodes (source, destination and relay nodes) and using the two-hop relay routing. This type of routing takes advantage of the mobility and the storage capacity of the nodes, called the relay nodes, in order to route packets between a source and a destination. Packets at relay nodes are assumed to have a limited lifetime in the network. Nodes are moving inside a bounded region according to some random mobility model. Closed-form expressions and asymptotic results when the number of nodes is large are provided for the packet delivery delay and for the energy needed to transmit a packet from the source to its destination. We also introduce and evaluate a variant of the two-hop relay protocol that limits the number of generated copies in the network. Our model is validated through simulations for two mobility models (random waypoint and random direction mobility models), and the performance of the two-hop routing and of the epidemic routing protocols are compared.\ud \u

    Resource-efficient strategies for mobile ad-hoc networking

    Get PDF
    The ubiquity and widespread availability of wireless mobile devices with ever increasing inter-connectivity (e. g. by means of Bluetooth, WiFi or UWB) have led to new and emerging next generation mobile communication paradigms, such as the Mobile Ad-hoc NETworks (MANETs). MANETs are differentiated from traditional mobile systems by their unique properties, e. g. unpredictable nodal location, unstable topology and multi-hop packet relay. The success of on-going research in communications involving MANETs has encouraged their applications in areas with stringent performance requirements such as the e-healthcare, e. g. to connect them with existing systems to deliver e-healthcare services anytime anywhere. However, given that the capacity of mobile devices is restricted by their resource constraints (e. g. computing power, energy supply and bandwidth), a fundamental challenge in MANETs is how to realize the crucial performance/Quality of Service (QoS) expectations of communications in a network of high dynamism without overusing the limited resources. A variety of networking technologies (e. g. routing, mobility estimation and connectivity prediction) have been developed to overcome the topological instability and unpredictability and to enable communications in MANETs with satisfactory performance or QoS. However, these technologies often feature a high consumption of power and/or bandwidth, which makes them unsuitable for resource constrained handheld or embedded mobile devices. In particular, existing strategies of routing and mobility characterization are shown to achieve fairly good performance but at the expense of excessive traffic overhead or energy consumption. For instance, existing hybrid routing protocols in dense MANETs are based in two-dimensional organizations that produce heavy proactive traffic. In sparse MANETs, existing packet delivery strategy often replicates too many copies of a packet for a QoS target. In addition, existing tools for measuring nodal mobility are based on either the GPS or GPS-free positioning systems, which incur intensive communications/computations that are costly for battery-powered terminals. There is a need to develop economical networking strategies (in terms of resource utilization) in delivering the desired performance/soft QoS targets. The main goal of this project is to develop new networking strategies (in particular, for routing and mobility characterization) that are efficient in terms of resource consumptions while being effective in realizing performance expectations for communication services (e. g. in the scenario of e-healthcare emergency) with critical QoS requirements in resource-constrained MANETs. The main contributions of the thesis are threefold: (1) In order to tackle the inefficient bandwidth utilization of hybrid service/routing discovery in dense MANETs, a novel "track-based" scheme is developed. The scheme deploys a one-dimensional track-like structure for hybrid routing and service discovery. In comparison with existing hybrid routing/service discovery protocols that are based on two-dimensional structures, the track-based scheme is more efficient in terms of traffic overhead (e. g. about 60% less in low mobility scenarios as shown in Fig. 3.4). Due to the way "provocative tracks" are established, the scheme has also the capability to adapt to the network traffic and mobility for a better performance. (2) To minimize the resource utilization of packet delivery in sparse MANETs where wireless links are intermittently connected, a store-and-forward based scheme, "adaptive multicopy routing", was developed for packet delivery in sparse mobile ad-hoc networks. Instead of relying on the source to control the delivery overhead as in the conventional multi-copy protocols, the scheme allows each intermediate node to independently decide whether to forward a packet according to the soft QoS target and local network conditions. Therefore, the scheme can adapt to varying networking situations that cannot be anticipated in conventional source-defined strategies and deliver packets for a specific QoS targets using minimum traffic overhead. ii (3) The important issue of mobility measurement that imposes heavy communication/computation burdens on a mobile is addressed with a set of resource-efficient "GPS-free" soluti ons, which provide mobility characterization with minimal resource utilization for ranging and signalling by making use of the information of the time-varying ranges between neighbouring mobile nodes (or groups of mobile nodes). The range-based solutions for mobility characterization consist of a new mobility metric for network-wide performance measurement, two velocity estimators for approximating the inter-node relative speeds, and a new scheme for characterizing the nodal mobility. The new metric and its variants are capable of capturing the mobility of a network as well as predicting the performance. The velocity estimators are used to measure the speed and orientation of a mobile relative to its neighbours, given the presence of a departing node. Based on the velocity estimators, the new scheme for mobility characterization is capable of characterizing the mobility of a node that are associated with topological stability, i. e. the node's speeds, orientations relative to its neighbouring nodes and its past epoch time. iiiBIOPATTERN EU Network of Excellence (EU Contract 508803

    Traffic distribution and network capacity analysis in social opportunistic networks

    Get PDF
    Social opportunistic networks are intermittently connected mobile ad hoc networks (ICNs) that exploit human mobility to physically carry messages between disconnected parts of the network. Human mobility thus plays an essential role in the performance of forwarding protocols in the networks, and people's movements are in turn affected by their social interactions with each other. In this paper we present an analysis of the traffic distribution among the nodes of social opportunistic networks and its impact on network capacity. For our analysis, we use a human contact graph that represents a social network of individuals. We characterize the graph as a scale-free network and apply forwarding strategies based on the information required by a node to select relays for its messages, categorising this information either as isolated or complete network or local network knowledge. We use a social network property, centrality, for the forwarding strategies, additionally considering tie strength in the forwarding metric and investigate their impact on traffic distribution. We show that all the strategies result in unfair traffic distribution due to a strong non-random structure of the networks, where hub nodes process much more relay traffic than non-hub nodes. Finally, we present a mathematical model of network capacity as an upper-bound of network delivery performance where hub nodes' resources become the limiting factors, and show that including tie strength in the forwarding metric improves the network capacity

    SOCIAL AND LOCATION BASED ROUTING IN DELAY TOLERANT NETWORKS

    Get PDF
    Delay tolerant networks (DTNs) are a special type of wireless mobile networks which may lack continuous network connectivity. Routing in DTNs is very challenging as it must handle network partitions, long delays, and dynamic topology in such networks. Recently, the consideration of social characteristics of mobile nodes provides a new angle of view in the design of DTNs routing protocols. In many DTNs, a multitude of mobile devices are used and carried by people (e.g. pocket switched networks and vehicular networks), whose behaviors are better described by social models. This opens the new possibilities of social-based routing, in which the knowledge of social characteristics is used for making better forwarding decision. However, the social relations do not necessarily reflect the true device communication opportunities in a dynamic DTN. On the other hand, the increasing availability of location technologies (GPS, GSM networks, etc.) enables mobile devices to obtain their locations easily. Consider that an individual’s location history in the real world implies his/her social interests and behaviors to some extent, in this dissertation, we study new social based DTN routing protocols, which utilize location and/or social features to achieve efficient and stable routing for delay tolerant networks. We first incorporate the location features into the social-based DTN routing methods to improve their performance by treating location similarity among nodes as possible social relationship. Then, we dis- cuss the possibility and methods to further improve routing performance by adding limited amount of throw-boxes into the networks to aid the DTN relay. Several throw-boxes based routing protocols and location selection methods for throw-boxes are proposed. All pro- posed routing methods are evaluated via extensive simulations with real life trace data (such as MIT reality, Nokia MDC, and Orange D4D)

    Design and analysis of a Speed-Aware Routing Protocol for mobile ad hoc networks

    Get PDF
    The flexibility of movement for the wireless ad hoc devices, referred to as node mobility, introduces challenges such as dynamic topological changes, increased frequency of route disconnections and high packet loss rate in Mobile Ad hoc Wireless Network (MANET) routing. This research proposes a novel on-demand routing protocol, Speed-Aware Routing Protocol (SARP) to mitigate the effects of high node mobility by reducing the frequency of route disconnections in a MANET. SARP identifies a highly mobile node which forms an unstable link by predicting the link expiration time (LET) for a transmitter and receiver pair. When the nodes have high relative velocity, the LET calculated is a small value; this means that the link is predicted to disconnect before the successful transmission of a specific demand. SARP omits such a packet-sending node from the link route during the route discovery phase. The omission of such unstable links helps SARP limit the flooding of control packets during route maintenance and reduces the overall control overhead generated in on-demand routing protocols. NS2 was used to implement the SARP with ad hoc on-demand vector (AODV) as the underlying routing algorithm. Extensive simulations were then conducted using Random Waypoint Mobility model to analyze the performance of SARP. The results from these simulations demonstrated that SARP reduced the overall control traffic of the underlying protocol AODV significantly in situations of high mobility and dense networks; in addition, it showed only a marginal difference as compared to AODV, in all aspects of quality-of-service (QOS) in situations of low mobility and sparse networks --Abstract, page iii

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    Role of Neural Network in Mobile Ad Hoc Networks for Mobility Prediction

    Get PDF
    The MANETs differ from traditional networks in a lot of aspects, such as high channel error rates, unusual channel features, frequent link breaks, and intense link layer contentions. These characteristics significantly reduce network connectivity, which affects overall network latency, network overhead, network throughput (i.e. the amount of data successfully transferred via a MANETs in a predetermined amount of time), and packet delivery ratio (PDR). For effective network resources preparation and organization in MANETs, the mobility forecast of MN and units is essential. This effectiveness would allow for better planning and higher overall quality - of - service, including reliable facility availability and efficient management of energy. In this research, we suggest to use ELMs, which are renowned for their ability to approximate anything, to model and forecast the mobility of each node in a MANET. Mobility-aware topology control methods and location-assisted routing both leverage mobility prediction in MANETs. It is assumed that each MN taking part in these protocols is aware of its current mobility data, including location, velocity, and movements direction angle. This approach predicts both the locations of future nodes and the distances between subsequent nodes. The interaction or relationship between the Cartesian longitude and latitude of the erratic nodes is better captured by ELMs than by multilayer perceptron’s, resulting in mobility prediction that is based on several conventional mobility models that is more precise and realistic
    • 

    corecore