3,994 research outputs found

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Beamforming in MISO Systems: Empirical Results and EVM-based Analysis

    Full text link
    We present an analytical, simulation, and experimental-based study of beamforming Multiple Input Single Output (MISO) systems. We analyze the performance of beamforming MISO systems taking into account implementation complexity and effects of imperfect channel estimate, delayed feedback, real Radio Frequency (RF) hardware, and imperfect timing synchronization. Our results show that efficient implementation of codebook-based beamforming MISO systems with good performance is feasible in the presence of channel and implementation-induced imperfections. As part of our study we develop a framework for Average Error Vector Magnitude Squared (AEVMS)-based analysis of beamforming MISO systems which facilitates comparison of analytical, simulation, and experimental results on the same scale. In addition, AEVMS allows fair comparison of experimental results obtained from different wireless testbeds. We derive novel expressions for the AEVMS of beamforming MISO systems and show how the AEVMS relates to important system characteristics like the diversity gain, coding gain, and error floor.Comment: Submitted to IEEE Transactions on Wireless Communications, November 200

    Alamouti OFDM/OQAM systems with time reversal technique

    Full text link
    Orthogonal Frequency Division Multiplexing with Offset Quadrature Amplitude Modulation (OFDM/OQAM) is a multicarrier modulation scheme that can be considered as an alternative to the conventional Orthogonal Frequency Division Multiplexing (OFDM) with Cyclic Prefix (CP) for transmission over multipath fading channels. In this paper, we investigate the combination of the OFDM/OQAM with Alamouti system with Time Reversal (TR) technique. TR can be viewed as a precoding scheme which can be combined with OFDM/OQAM and easily carried out in a Multiple Input Single Output (MISO) context such as Alamouti system. We present the simulation results of the performance of OFDM/OQAM system in SISO case compared with the conventional CP-OFDM system and the performance of the combination Alamouti OFDM/OQAM with TR compared to Alamouti CP-OFDM. The performance is derived by computing the Bit Error Rate (BER) as a function of the transmit signal-to-noise ratio (SNR)

    Formulating the Net Gain of MISO-SFN in the Presence of Self-Interferences

    Get PDF
    In this study, an analytical formula for multiple-input single-output single frequency network gain (MISO-SFNG) is investigated. To formulate the net MISO-SFNG, we derived the average signal to interference plus noise ratio (SINR) where the gain achieved by the distributed MISO diversity as a function of power imbalance is curve-fitted. Further, we analyzed the losses owing to self-interferences resulting from the delay spread and imperfect channel estimation. We verified the accuracy and effectiveness of the derived formula by comparing the measurement results with the analytical results. The derived formula helps to understand how various system factors affect the gain under a given condition. The formula can be used to evaluate the MISO-SFNG and to predict the MISO-SFN coverage in various system configurations
    • …
    corecore