16,544 research outputs found

    DeepSecure: Scalable Provably-Secure Deep Learning

    Get PDF
    This paper proposes DeepSecure, a novel framework that enables scalable execution of the state-of-the-art Deep Learning (DL) models in a privacy-preserving setting. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves more than 58-fold higher throughput per sample compared with the best-known prior solution. In addition to our optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of deep learning. Extensive evaluations of various DL applications demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology. This paper also provides mechanisms to securely delegate GC computations to a third party in constrained embedded settings

    Lagrange Coded Computing: Optimal Design for Resiliency, Security and Privacy

    Get PDF
    We consider a scenario involving computations over a massive dataset stored distributedly across multiple workers, which is at the core of distributed learning algorithms. We propose Lagrange Coded Computing (LCC), a new framework to simultaneously provide (1) resiliency against stragglers that may prolong computations; (2) security against Byzantine (or malicious) workers that deliberately modify the computation for their benefit; and (3) (information-theoretic) privacy of the dataset amidst possible collusion of workers. LCC, which leverages the well-known Lagrange polynomial to create computation redundancy in a novel coded form across workers, can be applied to any computation scenario in which the function of interest is an arbitrary multivariate polynomial of the input dataset, hence covering many computations of interest in machine learning. LCC significantly generalizes prior works to go beyond linear computations. It also enables secure and private computing in distributed settings, improving the computation and communication efficiency of the state-of-the-art. Furthermore, we prove the optimality of LCC by showing that it achieves the optimal tradeoff between resiliency, security, and privacy, i.e., in terms of tolerating the maximum number of stragglers and adversaries, and providing data privacy against the maximum number of colluding workers. Finally, we show via experiments on Amazon EC2 that LCC speeds up the conventional uncoded implementation of distributed least-squares linear regression by up to 13.43×13.43\times, and also achieves a 2.36×2.36\times-12.65×12.65\times speedup over the state-of-the-art straggler mitigation strategies

    Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications

    Get PDF
    We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring Z2l\mathbb{Z}_{2^l} using additively secret shared values and nonlinear operations using Yao's Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from the common assumption of additive or linear secret sharing models where three or more parties need to communicate in the online phase: the framework allows two parties with private inputs to communicate in the online phase under the assumption of a third node generating correlated randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed in an offline phase which substantially reduces the communication overhead. Chameleon is both scalable and significantly more efficient than the ABY framework (NDSS'15) it is based on. Our framework supports signed fixed-point numbers. In particular, Chameleon's vector dot product of signed fixed-point numbers improves the efficiency of mining and classification of encrypted data for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5 layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft CryptoNets (ICML'16) and MiniONN (CCS'17), respectively

    Protecting privacy of users in brain-computer interface applications

    Get PDF
    Machine learning (ML) is revolutionizing research and industry. Many ML applications rely on the use of large amounts of personal data for training and inference. Among the most intimate exploited data sources is electroencephalogram (EEG) data, a kind of data that is so rich with information that application developers can easily gain knowledge beyond the professed scope from unprotected EEG signals, including passwords, ATM PINs, and other intimate data. The challenge we address is how to engage in meaningful ML with EEG data while protecting the privacy of users. Hence, we propose cryptographic protocols based on secure multiparty computation (SMC) to perform linear regression over EEG signals from many users in a fully privacy-preserving(PP) fashion, i.e., such that each individual's EEG signals are not revealed to anyone else. To illustrate the potential of our secure framework, we show how it allows estimating the drowsiness of drivers from their EEG signals as would be possible in the unencrypted case, and at a very reasonable computational cost. Our solution is the first application of commodity-based SMC to EEG data, as well as the largest documented experiment of secret sharing-based SMC in general, namely, with 15 players involved in all the computations
    corecore