47,225 research outputs found

    Recognizing Graph Theoretic Properties with Polynomial Ideals

    Get PDF
    Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.Comment: 20 pages, 3 figure

    Universality for Random Tensors

    Get PDF
    We prove two universality results for random tensors of arbitrary rank D. We first prove that a random tensor whose entries are N^D independent, identically distributed, complex random variables converges in distribution in the large N limit to the same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random tensors. We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution of tensor entries is invariant, assuming that the cumulants of this invariant distribution are uniformly bounded, we prove that in the large N limit the tensor again converges in distribution to the distributional limit of a Gaussian tensor model. We emphasize that the covariance of the large N Gaussian is not universal, but depends strongly on the details of the joint distribution.Comment: Final versio

    Monodromy invariants in symplectic topology

    Full text link
    This text is a set of lecture notes for a series of four talks given at I.P.A.M., Los Angeles, on March 18-20, 2003. The first lecture provides a quick overview of symplectic topology and its main tools: symplectic manifolds, almost-complex structures, pseudo-holomorphic curves, Gromov-Witten invariants and Floer homology. The second and third lectures focus on symplectic Lefschetz pencils: existence (following Donaldson), monodromy, and applications to symplectic topology, in particular the connection to Gromov-Witten invariants of symplectic 4-manifolds (following Smith) and to Fukaya categories (following Seidel). In the last lecture, we offer an alternative description of symplectic 4-manifolds by viewing them as branched covers of the complex projective plane; the corresponding monodromy invariants and their potential applications are discussed.Comment: 42 pages, notes of lectures given at IPAM, Los Angele

    Strings from Feynman Graph counting : without large N

    Full text link
    A well-known connection between n strings winding around a circle and permutations of n objects plays a fundamental role in the string theory of large N two dimensional Yang Mills theory and elsewhere in topological and physical string theories. Basic questions in the enumeration of Feynman graphs can be expressed elegantly in terms of permutation groups. We show that these permutation techniques for Feynman graph enumeration, along with the Burnside counting lemma, lead to equalities between counting problems of Feynman graphs in scalar field theories and Quantum Electrodynamics with the counting of amplitudes in a string theory with torus or cylinder target space. This string theory arises in the large N expansion of two dimensional Yang Mills and is closely related to lattice gauge theory with S_n gauge group. We collect and extend results on generating functions for Feynman graph counting, which connect directly with the string picture. We propose that the connection between string combinatorics and permutations has implications for QFT-string dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos correcte
    • …
    corecore