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Abstract. We prove two universality results for random tensors of arbitrary rank D. We first prove that a random tensor whose
entries are ND independent, identically distributed, complex random variables converges in distribution in the large N limit to the
same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random
tensors.

We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution of
tensor entries is invariant, assuming that the cumulants of this invariant distribution are uniformly bounded, we prove that in the
large N limit the tensor again converges in distribution to the distributional limit of a Gaussian tensor model. We emphasize that
the covariance of the large N Gaussian is not universal, but depends strongly on the details of the joint distribution.

Résumé. Nous démontrons deux théorèmes d’universalité pour les tenseurs aléatoires de rang D quelconque. Nous montrons
d’abord qu’un tenseur aléatoire dont les entrées sont ND variables complexes indépendantes identiquement distribuées converge
en distribution dans la limite N grand vers la même limite que la limite en distribution d’un modèle de tenseurs Gaussien. Cela
généralise l’universalité des matrices aléatoires aux tenseurs aléatoires.

Nous démontrons ensuite un deuxième théorème d’universalité, plus fort. Sous l’hypothèse que la distribution de probabilité
jointe des entrées du tenseur est invariante, et en supposant que les cumulants de cette distribution invariante sont uniformément
bornés, nous prouvons que dans la limite N grand le tenseur converge à nouveau en distribution vers la même limite que la limite
en distribution d’un modèle de tenseurs Gaussien. La covariance de la distribution Gaussienne à N grand n’est pas universelle,
mais dépend des détails de la distribution jointe.
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1. Introduction

There are two main versions of universality in probability theory. The ordinary version is the central limit theorem,
stating that the (appropriately rescaled) sum of a large number of independent identically distributed (i.i.d.) random
variables follows a normal distribution. The second version, or matrix-case, states that the statistics of invariant quan-
tities of an N by N random matrix are independent of the details of the atomic distribution of the coefficients of the
matrix. In the large N limit the random matrix converges in distribution to a Gaussian matrix model. In more familiar
terms, the eigenvalue density obeys the Wigner semi-circle law under quite general assumptions [3,27,29]. Universal-
ity extends to details of the statistics of eigenvalues in the large N limit. The spacing of eigenvalues for instance is
determined only by the first four moments of the distribution of the matrix entries [36] and follows Dyson’s sine law
[11,12].

In the matrix case the invariant moments are traces of polynomials in the matrix. The limit law can be deduced
using a Feynman graph representation. In this approach the problem reduces to finding the so-called 1/N expansion
for random matrices introduced in [35]. This fixes the correct rescaling of the invariant observables and their limit
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distribution. The statistics of the eigenvalue density appear as a clever gauge-fixed version of this limit in the particular
gauge of diagonal matrices. The apparent non-Gaussian character of the Dyson–Wigner law is due to the particular
form of the Faddeev–Popov determinant which can be computed exactly in this gauge. The resulting Vandermonde
determinant governs the eigenvalue repulsion hence Dyson’s sine law. But universality does not require gauge-fixing.

Although universality can be established under quite general assumptions, in the matrix case there exist invariant
probability laws which are not universal [13]. For example any measure which can be written as the exponential of
the trace of a polynomial in the matrix has a planar but not necessarily Gaussian large N limit. A Gaussian matrix can
be recovered then via the non-commutative central limit theorem. Under very general assumptions random matrices
become free in the large N limit (this is again a consequence of the 1/N expansion), and the central limit theorem
ensures that the (appropriately rescaled) sum of a large number of free matrices converges in distribution to a Gaussian
matrix [37–39].

To summarize there are two ingredients which power both universality and freeness for matrices, namely the
invariance and the 1/N expansion. Random matrices encode a theory of random two dimensional surfaces and are
widely applied in physics for the study of integrable systems, exact critical statistical mechanics, quantum gravity
in two dimensions and the list goes on. Matrices generalize in higher dimensions to tensors. Introduced in the ’90s
[2,16] as tools to study random geometries in dimensions higher than two, random tensor models remained an open
problem ever since. Although invariant quantities for tensors are well known, until recently no 1/N expansion existed
for tensors of rank higher than two and no analytic result on these models could be established. The lack of results on
random tensors is exemplified by the Gaussian distribution. One can of course easily write a Gaussian distribution for
a random tensor. However its large N behavior, that is identifying the appropriate observables (and their scaling) in
the large N limit, has not been established prior to this work.

The situation has drastically changed recently and the necessary ingredients for universality have been found for
tensors of higher rank, with the discovery of the 1/N expansion [19,20,23] for colored [18,21] random tensors. The
first consequences for statistical mechanics and quantum gravity have been developed, see [24] for a general review
of this thriving subject.

In this paper we derive the universality properties associated to this 1/N expansion for a unique complex non-
symmetric tensor. We establish two universality results. The first one is just the straightforward generalization of the
universality of the Gaussian measure to tensors with entries i.i.d. random variables. The second one is more powerful.
The natural requirement one should impose on the joint distribution of the tensor entries is not independence, but
invariance. We show in this paper that if the joint distribution of the entries is invariant and its cumulants are uniformly
bounded then in the large N limit the random tensor converges in distribution to the distributional limit of a Gaussian
tensor model. This is in contrast with random matrices, and shows in particular that the Gaussian distribution is a more
powerful attractor for higher rank tensors than it is for matrices. However we emphasize that the covariance of the
large N Gaussian is not universal and the large N limits of random tensors are rather subtle. The Gaussianity allows
one only to compute all the large N correlations in terms of the large N covariance, but the latter has a very non-trivial
dependence on the details of the joint distribution of entries. In particular the perturbed Gaussian measures (presented
in Appendix A) lead to a multitude of continuum limits [6], thus describing infinitely refined geometries, dominated
by spherical topologies [24].

Our results cover tensors of arbitrary rank and lay the foundation for the study of random geometries in arbitrary di-
mensions using random tensors. This study is relevant for critical statistical mechanics, integrability, quantum gravity
and so on in more than two dimensions.

The proofs of our results rely on a representation of the cumulants of the joint distribution of tensor entries by
colored graphs. This representation is of course inspired by the Feynman graph representation of perturbed Gaussian
measures. However, unlike the former, our representation is completely general and applies to all invariant joint
distributions of the entries. The precise link between our graphical representation and Feynman graphs is detailed in
the Appendix A. Of course, the main challenge is not so much to find an appropriate graphical representation, but to
compute the contribution of each graph. This requires on one hand to find the appropriate scaling of various cumulants
with N , and on the other hand a detailed combinatorial study of the graphs. If one assumes a uniform scaling of the
cumulants (i.e. all cumulants at a given order scale with the same power of N , irrespective of the associated graph),
the scalings presented in this paper are optimal: tensor distributions which violate them do not admit a large N limit.
We comment on these scalings and if they can be relaxed in the non-uniform case (i.e. when the scaling of a cumulant
is allowed to depend on the details of the associated graph) in Appendix B.
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One interesting question is to combine our graphical representation with the Connes–Kreimer algebra [9,10] of the
usual Feynman graphs, as the trace invariant cumulants have the structure of an antipode of a graph Hopf algebra. A
second important open question not addressed in this paper is to find a clever gauge fixing which would generalize
correctly the diagonal condition in the matrix case, and to compute the corresponding Faddeev–Popov determinant.
This may require to find better “finite-N truncations” of the theory (i.e. better cutoffs in the quantum field theory
language), and an appropriate generalization of the notion of eigenvalues and spectrum for tensors.

The proofs we present below are combinatorial and rely heavily on the colored graph representation we introduce.
The plan of the paper is as follows. In Section 2 we give the relevant definitions and state our two universality
theorems. In Section 3 we recall the universality for random matrices and its link with the 1/N expansion. We use
this opportunity to introduce at length the colored graph representation for this more familiar case. Once familiarized
with this representation we present a number of combinatorial results concerning colored graphs in the first part of
Section 4. We subsequently use this combinatorial input to prove the two universality results for random tensors
in the second part of Section 4. Thus the Sections 4.1 and 4.2 are mainly review (except Lemmas 4 and 5), while
the Sections 4.3, 4.4 and 4.5 are entirely new and contain our main results. In the Appendix A we give a detailed
presentation of the perturbed Gaussian measures for random tensors, both in perturbations (Section A.1) for the
generic case and at full non-perturbative level (Section A.2) for a particular example. Both these subsections present
new results.

This paper falls short in many technical points. We do not give a precise definition of infinite tensors, we do not
propose a generalization of the diagonal gauge of random matrices, we do not detail the subleading corrections in N

and so on. All these, and many other, topics need to be thoroughly examined and clarified before obtaining a fully
fledged theory of random tensors. Our contribution is the derivation of the generic, universal behavior of random
tensors at leading order, which is the prerequisite for all such studies.

2. Notation and main theorems

A rank D covariant tensor Tn1···nD (with n1, n2, . . . , nD ∈ {1, . . . ,N}) can be seen as a collection of ND complex
numbers supplemented by the requirement of covariance under base change. We consider tensors T with no sym-
metry property under permutation of their indices transforming under the external tensor product of D fundamental
representations of U(N). In words, the unitary group acts independently on each index of the tensor. The complex
conjugate tensor T̄n1···nD is a rank D contravariant tensor

Ta1···aD =
∑

n1···nD

U
(1)

a1n1 · · ·U(D)

aDnDTn1···nD , T̄ā1···āD =
∑

n̄1···n̄D

Ūā1n̄1 · · · Ū (D)

āDn̄D T̄n̄1···n̄D . (1)

where we denoted conventionally the indices of the complex conjugated tensor with a bar. We emphasize that, as
we consider the external tensor product of fundamental representations of the unitary group, the unitary operators
U(1), . . . ,U(D) are all independent. This is crucial in order to obtain the colored graph representation we discuss
below1. We will sometimes denote the D-uple of integers n1, . . . , nD by �n and assume (unless otherwise specified)
D ≥ 3.

Among the invariants one can build out of T and T̄ we will deal in this paper exclusively with trace invariants. The
trace invariants are built by contracting in all possible ways pairs of covariant and contravariant indices in a product
of tensor entries. We write such a trace invariant formally as

Tr(T, T̄) =
∑∏

δn1n̄1Tn1···nD · · · T̄n̄1···n̄D , (2)

where every index ni is contracted with an index n̄i . By the fundamental theorem of classical invariants of U(N),
the trace invariants form a basis in the space of invariant polynomials in the tensor entries (see [7] for a direct proof

1Note that one can even consider tensors transforming under the external tensor product of fundamental representations of U(N1)�U(N2)� · · ·�
U(ND) with Ni �= Nj . The results of this paper hold up to trivial modifications provided that one takes all Ni to infinity keeping the ratios Ni

N1
fixed.
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Fig. 1. Graphical representation of trace invariants.

relying on averaging over the unitary group) hence in particular the probability distribution of a random tensor is
encoded in their expectations.

Note that a trace invariant has necessarily the same number of T and T̄ and, as any index ni is contracted with an
index n̄i , it can be represented as a bipartite closed D-colored graph (or simply a D-colored graph).

Definition 1. A bipartite closed2 D-colored graph is a graph B = (V(B),E(B)) with vertex set V(B) and edge set
E(B) such that:

• V(B) is bipartite, i.e. there exists a partition of the vertex set V(B) = A(B) ∪ Ā(B), such that for any element
l ∈ E(B), then l = (v, v̄) with v ∈A(B) and v̄ ∈ Ā(B). Their cardinalities satisfy |V(B)| = 2|A(B)| = 2|Ā(B)|. We
call v ∈A(B) the white vertices and v̄ ∈ Ā(B) the black vertices of B.

• The edge set is partitioned into D subsets E(B) = ⋃D
i=1 E i (B), where E i (B) = {li = (v, v̄)} is the subset of edges

with color i.
• It is D-regular (all vertices are D-valent) with all edges incident to a given vertex having distinct colors.

To draw the graph associated to a trace invariant we represent every Tn1···nD by a white vertex v and every T̄n̄1···n̄D

by a black vertex v̄. We promote the positions of an index to a color, thus n1 has color 1, n2 has color 2 and so on.
The contraction of an index ni on Tn1···nD with an index n̄i of T̄n̄1···n̄D is represented by an edge li = (v, v̄) ∈ E i (B)

connecting the vertex v (representing Tn1···nD ) with the vertex v̄ (representing T̄n̄1···n̄D ). The edges inherit the color of
the index, i, and always connect a black and a white vertex. Some examples of trace invariants for rank 3 tensors are
represented in Fig. 1. Every trace invariant can be written as

TrB(T, T̄) =
∑
n,n̄

δBnn̄

∏
v,v̄∈V(B)

T�nv
T̄�̄nv̄

, δBnn̄ =
D∏

i=1

∏
li=(v,v̄)∈E i (B)

δni
v n̄i

v̄
, (3)

where the sum runs over all the indices n ∈ {ni
v|v ∈ V(B), i = 1, . . . ,D}, n̄ ∈ {n̄i

v̄|v̄ ∈ V(B), i = 1, . . . ,D}. We call the
product δBnn̄ encoding the pattern of contraction of the indices the trace invariant operator associated to the graph B
[22]. The trace invariant associated to a graph B factors over its connected components Bρ . We call a trace invariant
whose associated graph is connected a connected trace invariant (or a single trace invariant).

Definition 2. The faces of a D-colored graph B are its connected subgraphs with two colors.3 We denote F (i,j)(B)

the set of faces with colors i and j of B, and F ij (B) = |F (i,j)(B)| their number. The d-bubbles of a graph are its
connected subgraphs with d colors.

A colored graph is a cellular complex with cells given by the d-bubbles. In fact it can be shown that it is dual to an
abstract simplicial complex, and even more, a simplicial pseudo-manifold [18,21], see also Appendix A.

A random tensor is a collection of ND complex random variables. We consider only even distributions, that is the
moments of the joint distribution of tensor entries are non-zero only if the numbers of T and T̄ are equal. We denote

2A closely related category of graphs, the open D-colored graphs, will be introduced in Section 4.2.
3All the faces of the closed connected D-colored graphs are therefore bi-colored circuits of edges. This will not be the case for the open D-colored
graphs we will introduce in Section 4.2.
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the joint moment of 2k tensor entries by μN(T�n1 , T̄�̄n1̄
, . . . ,T�nk

, T̄�̄nk̄
). The cumulants of the joint distribution of tensor

entries are defined implicitly by

μN(T�n1 , T̄�̄n1̄
, . . . ,T�nk

, T̄�̄nk̄
) =

∑
π

αmax∏
α=1

κ2k(α)[T�nα1
, T̄�̄nᾱ1

, . . .], (4)

where π runs over the partitions of the set of 2k points V = {1, . . . , k, 1̄, . . . , k̄} into αmax disjoint bipartite subsets
V(α) for α = 1,2, . . . , αmax with αmax ≤ k with cardinality |V(α)| = 2k(α). The sets V(α) are bipartite in the sense
that |V(α) ∩ {1, . . . , k}| = |V(α) ∩ {1̄, . . . , k̄}| = k(α). The cumulants can be computed in terms of the moments using
the Möbius inversion formula. Note that

∑αmax

α=1 k(α) = k.
We will define a trace invariant distribution as a distribution whose cumulants are trace invariant operators. We will

allow in this definition trace invariant operators which correspond to disconnected graphs. At first sight it might seem
rather surprising that according to our definition a cumulant (a connected moment) can be expressed as a sum over
disconnected graphs. First, the case when the cumulants expand only in connected graphs is certainly a particulariza-
tion of this more general case. Second, and most importantly, it is in fact natural to allow disconnected graphs into the
expansion of a cumulant in invariants. This is clear when dealing with perturbed Gaussian measures in Appendix A,
both at the perturbative and at the non-perturbative level. In perturbations this is seen as follows: moments expand in
Feynman graphs, and cumulants (connected moments) expand in connected Feynman graphs G. However the pattern
of contraction of the tensor indices associated to a Feynman graph G is encoded in its boundary graph, B = ∂G (a
precise definition of the boundary graph is given in Section 4.2). It turns out that a Feynman graph G can be connected
(thus contributing to a cumulant), and have a disconnected boundary graph ∂G (as shown Fig. 8 below). In order to
include the perturbed Gaussian measures one must allow disconnected graphs in the expansion of a cumulant. At the
constructive level this can be seen as a consequence of the invariance of the cumulants under unitary transformations
(see the proof of Theorem 7). The same phenomenon appears in the more familiar case of random matrices: at finite
N one obtains contributions to the cumulants corresponding to connected Feynman graphs having two or more ex-
ternal faces (“multi-loop observables” in the physics literature). Each external face is a connected component of the
boundary graph. However such contributions are penalized in the scaling with N .

We need some more notation. We denote B a generic D-colored graph with 2k(B) vertices labeled 1, . . . , k(B),

1̄, . . . k̄(B). We also denote C(B) the number of connected components (labeled Bρ ) of B, and 2k(Bρ) the number of

vertices of the connected component Bρ . We have
∑C(B)

ρ=1 k(Bρ) = k(B) and every graph B has an associated partition

of the vertex set {1, . . . , k(B), 1̄, . . . , k̄(B)} into C(B) disjoint bipartite subsets of cardinality 2k(Bρ), ρ = 1, . . . ,C(B).

Definition 3. The probability distribution μN of the ND complex random variables T�n is called trace invariant if its
cumulants are linear combinations of trace invariant operators,

κ2k[T�n1 , T̄�̄n1̄
, . . . ,T�̄nk

, T̄�̄nk̄
] =

∑
B,k(B)=k

K(B,μN)

C(B)∏
ρ=1

δ
Bρ

nn̄ , (5)

for some K(B,μN) where the sum runs over all the D-colored graphs B with 2k vertices.

To compute the joint moments of a trace invariant distribution one has to perform two expansions: first the ex-
pansion of the joint moments in cumulants and second the expansion of the cumulants themselves in graphs. We are
interested in the large N behavior of a trace invariant probability measure μN . In order for such a limit to exist, the
cumulants of μN must scale with N . There are two main cases. Either the scaling with N is uniform, that is it is
insensitive to all but the roughest features of the graph B or it depends on the details of B. We will deal in the main
body of this paper with the first case, and briefly discuss the second case in Appendix B. We denote

K(B,μN)

N−2(D−1)k(B)+D−C(B)
≡ K(B,N). (6)

There exists a unique D-colored graph with 2 vertices (all its D edges necessarily connect the two vertices). We
call it the D-dipole and denote it B(2). We call K(B(2),N) the covariance of the distribution μN .
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Definition 4. We say that the trace invariant probability distribution μN is properly uniformly bounded at large N if{
limN→∞ K(B(2),N) < ∞,

K(B,N) ≤ K(B), ∀B �= B(2),
(7)

for some constants K(B) and N large enough. We denote K(B(2)) = limN→∞ K(B(2),N).

We will establish our universality results for properly uniformly bounded distributions. A natural question one
can ask at this point is if, in particular examples, proper uniform boundedness is easy to establish. This questions is
addressed in Appendix A. We first show that uniform boundedness holds in perturbations for all perturbed Gaussian
measures. Indeed for such measures the cumulants can be expressed as sums over Feynman graphs and in Appendix
A.1 we show that each graph respects the proper uniform bound. However this is not yet a proof: in order to establish
proper uniform boundedness of a cumulant one must deal with the sum over all Feynman graphs. Sums over graphs are
notoriously difficult to control (the perturbative series are not summable, but only Borel summable), and promoting a
perturbative bound to a bound at the full non-perturbative level is the object of constructive field theory [15]. We will
prove in Appendix A.2 that the proper uniform bound on the full resummed cumulants holds for a measure perturbed by
a quartic invariant. The full constructive bounds on cumulants for arbitrary polynomially perturbed Gaussian measures
can be achieved by an appropriate generalization of the techniques discussed in Appendix A.2. We emphasize that
once constructive bounds are established they always reproduce the scaling with N of the perturbative bounds, hence
the perturbative uniform bounds established in Appendix A.1 should hold for the full resummed cumulants also in the
general case.

The trace invariance condition of the joint distribution is weaker than the independent identically distributed condi-

tion. The latter can be seen as supplementing the trace invariant operator
∏C(B)

ρ=1 δ
Bρ

nn̄ by a number of further identifica-
tions of indices, imposing that all indices of color i in a cumulant are equal (and modifying appropriately the scaling
with N ). These extra identifications decrease the number of independent indices and simplify the joint measure.

The normalized Gaussian distribution of covariance σ 2 for a random tensor is the probability measure

e−ND−1(1/σ 2)
∑

�n,�̄n T�nδ�n�̄nT̄�̄n
(∏

�n

√
ND−1

σ 22πı
dT�n

)(∏
�̄n

√
ND−1

σ 22πı
dT̄�̄n

)
. (8)

Grouping the tensor entries into pairs of complex conjugated variables (T�n and T̄�̄n with �n = �̄n), the products over �n
and �̄n combine into a unique product running over the pairs,

∏
�n(ND−1

σ 2
dT�n dT̄�n

2πı
).

The Gaussian expectations of the connected (single) trace invariants are

〈
TrB(T, T̄)

〉
σ 2 =

∫ (∏
�n

ND−1

σ 2

dT�n dT̄�n
2πı

)
e−ND−1(1/σ 2)

∑
�n�̄n T�nδ�n�̄nT̄�̄n TrB(T, T̄). (9)

It is in fact a non-trivial problem to compute the moments of the Gaussian distribution, and we defer it to Section 4.3.
For now we just mention that for any graph B with 2k(B) vertices there exist two non-negative integers, Ω(B) and
R(B) such that

lim
N→∞N−1+Ω(B)

〈
TrB(T, T̄)

〉
σ 2 = σ 2k(B)R(B). (10)

We call Ω(B) the convergence order of the invariant B. The normalization in Eq. (8) is the only normalization which
ensures that the convergence order is positive and, more importantly, for all B, there exists an infinite family of
invariants (graphs B′) such that Ω(B) = Ω(B′), see Lemma 7.

Definition 5. A random tensor T distributed with the probability measure μN converges in distribution to the distri-
butional limit of a Gaussian tensor model of covariance σ 2 if the large N limit of the expectation of any connected
trace invariant equals the large N Gaussian expectation of the invariant

lim
N→∞N−1+Ω(B)μN

[
TrB(T, T̄)

] = σ 2k(B)R(B). (11)
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This paper establishes two theorems. The first one simply generalizes the universality of random matrices to random
tensors:

Theorem 1 (Universality 1). Consider ND i.i.d. random variables T�n, each of covariance σ 2. Then, in the large N

limit, the tensor T�n = 1
N(D−1)/2 T�n converges in distribution to a Gaussian tensor of covariance σ 2.

The second universality theorem is:

Theorem 2 (Main Theorem: Universality 2). Consider ND random variables T�n whose joint distribution is trace
invariant and properly uniformly bounded of covariance K(B(2),N). Then in the large N limit the tensor T�n converges
in distribution to a Gaussian tensor of covariance K(B(2)) = limN→∞ K(B(2),N).

Universality is thus much stronger for random tensors than it is for random matrices. For the latter universality
can be established if, for instance, the distribution μN is i.i.d, but one achieves various non-Gaussian large N limits
[13] for trace invariant measures. The limit eigenvalue distributions can be evaluated and it is different from the usual
semicircle law (multi-cut solutions and so on). A set of matrices whose joint distribution is trace invariant become
free in the large N limit. Random tensors exhibit a more powerful universality property: properly uniformly bounded
trace invariant distributions become Gaussian in the large N limit. However note that the large N covariance K(B(2))

strongly depends on the details of the joint distribution at finite N . For the case of perturbed Gaussian measures the
large N covariance is a sum over an infinite family of Feynman graphs and exhibits various multicritical behaviors
[6].

Before proceeding we fix some notation. From now on B will always designate the invariant whose expectation
we evaluate. As we deal only with connected (single trace) invariants, B will always be a connected D colored graph.
The graphs B(α) arise from the expansion of cumulants into trace invariant operators. They are not connected. Their
connected components are labeled Bρ(α).

When evaluating expectations of observables we will introduce D+1 colored graphs (Definition 1 with D replaced
by D + 1). We will call the new color 0. We will use G as a dustbin notation for connected D + 1 colored graphs. The
edges of the new color 0, denoted l0 ∈ E0(G), play a special role and will be represented as dashed edges.

3. Random matrices

We will first detail the case of random matrices. This serves both as motivation and as an opportunity to introduce the
appropriate tools for the study of random tensors.

All connected bi-colored graphs with 2k vertices (labeled 1, . . . , k, 1̄, . . . , k̄) are cycles with alternating colors
(which we denote B). The associated trace invariants are written

δBnn̄ =
2∏

i=1

∏
li=(v,v̄)∈E i (B)

δni
v n̄i

v̄
,

(12)
TrB(A, Ā) =

∑
n,n̄

δBnn̄

∏
v,v̄∈V(B)

A�nv
Ā�̄nv̄

≡ Tr
[(
A

†
A
)k]

.

Any invariant function of a generic (i.e. not necessarily hermitian) matrix can be evaluated starting from these trace
invariants, as they fix the spectral measure of A†A.
Gaussian distribution of a random matrix. The Gaussian distribution of a non-hermitian random N × N matrix A of
covariance 1 is the probability measure

e−N
∑

A
n1n2 δ

n1 n̄1 δ
n2 n̄2 Ān̄1 n̄2

∏
(n1,n2)

(
N

dAn1n2 dĀn1n2

2πı

)
, (13)
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Fig. 2. A covering graph G of an observable B.

where the product is taken over all the (complex) entries An1n2 . Note that the exponent can alternatively be written in
the more familiar form N Tr(A†

A). The expectations of Gaussian distribution in the large N limit are,

lim
N→∞N−1〈Tr

[(
A

†
A
)k]〉 = 1

k + 1

(
2k

k

)
. (14)

It is instructive to prove this. We represent the trace invariant as a colored cycle B with 2k vertices

〈
Tr

[(
A

†
A
)k]〉 = ∑

n,n̄

δBnn̄

〈 ∏
v,v̄∈V(B)

A�nv
Ā�̄nv̄

〉
. (15)

The Gaussian expectation of a product of matrix entries is a sum over pairings (Wick contractions in the physics
language) of products of covariances. If two matrix entries are paired by a covariance we connect them by a dashed
edge (to which we associate by convention the color 0). A pairing is then represented as a (Feynman) graph G.

Definition 6. We call a graph with 3 colors G a covering graph of B if G reduces to B by deleting the edges of color
0, G \ E0(G) = B.

The contraction of two entries An1n2 and Ān̄1n̄2 with the Gaussian measure (13) comes to replacing them by the
covariance 1

N
δn1n̄1δn2n̄2 , hence each edge of color 0, l0 = (v, v̄) ∈ E0(G), will bring a factor 1

N
δn1

vn̄1
v̄
δn2

vn̄2
v̄

(see for
instance [25]).

The graph of the invariant B has two colors 1 and 2, while a covering graph G has three colors: 1, 2 and the
extra color 0 of the dashed edges. An example of a covering graph G contributing to the expectation of Tr[(A†

A)3] is
presented in Fig. 2. The edges of color 0 are drawn outwards such that the colors are encountered in the order 0, 1, 2
when turning clockwise (resp. anti clockwise) around the black (resp. white) vertices.

The expectation of B becomes a sum over all covering graphs G

〈
Tr

[(
A

†
A
)k]〉 = ∑

n,n̄

(
2∏

i=1

∏
li=(v,v̄)∈E i (B)

δni
v n̄i

v̄

) ∑
G,G\E0(G)=B

∏
l0=(v,v̄)∈E0(G)

1

N
δn1

vn̄1
v̄
δn2

vn̄2
v̄
, (16)

and, as the edges of color 1 and 2 of any such G are in fact the edges of color 1 and 2 of B

〈
Tr

[(
A

†
A
)k]〉 = ∑

G,G\E0(G)=B

∑
n,n̄

(
2∏

i=1

∏
li=(v,v̄)∈E i (G)

δni
v n̄i

v̄

)( ∏
l0=(v,v̄)∈E0(G)

1

N
δn1

vn̄1
v̄
δn2

vn̄2
v̄

)
. (17)

To evaluate the contribution of a graph G one must evaluate the number of independent sums over the matrix indices
n, n̄. The Kronecker δs compose along the faces (bi-colored circuits) of colors 01 and 02 and yield an independent
free sum for each such face. As we have exactly k edges of color 0 we get〈

Tr
[(
A

†
A
)k]〉 = ∑

G,G\E0(G)=B

1

Nk
NF 01(G)+F 02(G). (18)
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Note that the face 12 corresponding to the circuit B with colors 12 (hence to the observable itself) does not bring any
sum. The graph G has 2k vertices (k black and k white), 3k edges (k dashed edges of color 0 and k solid edges for
each of the colors 1 and 2) and faces (F 01(G) + F 02(G) representing free sums and F 12(G) = 1 with no sum). The
Euler character of G is

2k − 3k + F 01(G) + F 02(G) + 1 = 2 − 2g(G) ⇒ −1 − k + F 01(G) + F 02(G) = −2g(G). (19)

It follows that in the large N limit only graphs G of genus g(G) = 0 contribute. We call such graphs minimal covering
graphs of B. Equivalently they can be seen as the covering graphs of B with maximal number of faces F 01(G) +
F 02(G). Thus

lim
N→∞N−1〈Tr

[(
A

†
A
)k]〉 = Rk, (20)

where Rk counts the number of minimal (planar) covering graphs G,G \E0(G) = B. It is easy to show (see for instance
[25]) that R1 = 1 and Rk+1 = ∑k

p=0 RpRk−p , thus Rk = 1
k+1

(2k
k

)
, i.e. Rk are the Catalan numbers. The normalization

of the Gaussian is canonical, and not a matter of choice: any other normalization leads either to infinite or to zero
expectations in the large N limit.

3.1. Universality for random matrices

In order to introduce the ideas we will use later to prove the universality properties of random higher rank tensors we
present below the classical universality of random matrices using this graphical representation.

Theorem 3. Let M be a matrix with entries i.i.d. complex random variables with centered distributions of unit co-
variance. In the large N limit, the matrix M = 1√

N
M converges in distribution to a random matrix distributed on a

Gaussian.

Proof. The matrices M†M are called random covariance matrices (or Wishart matrices) [13]. The moments of the
matrix M are written

lim
N→∞

1

N
μN

[
Tr

[(
M

†
M

)k]] = lim
N→∞

1

N1+k
μN

[
Tr

[(
M†M

)k]]
= lim

N→∞
1

N1+k

∑
n,n̄

δBnn̄μN [M�n1 , M̄�̄n1̄
, . . . ,M�nk

, M̄�̄nk̄
]

= lim
N→∞

1

N1+k

∑
n,n̄

δBnn̄

∑
π

κπ [M�n1 , M̄�̄n1̄
, . . . ,M�nk

, M̄�̄nk̄
], (21)

where we denoted κπ the product of cumulants associated to the partition π and 1, . . . , k, 1̄, . . . , k̄ are the vertices of
B. As the entries are independent, the only non-zero cumulants are κ2q [Mij , M̄ij , . . . ,Mij , M̄ij ]. Like in the Gaussian
case, each cumulant will introduce constraints on the number of independent sums. We slightly extend our graphical
representation. If two matrix entries are connected by a two point cumulant we connect them, as in the Gaussian case,
by a dashed edge of color 0. If four (or more) matrix entries are connected by a cumulant, all the four (or more) matrix
elements have the same indices. We will employ a simple trick to represent such cumulants, namely we will connect
the matrix entries two by two (a M and a M̄) by dashed edges of color 0 and keep in mind that the indices are further
identified. The pairing is not canonical, and in order to control the subleading contributions one needs to improve
this graphical representation and track carefully the higher order cumulants. However at leading order we just need a
rough estimate of the number of independent sums in an observable and a non-canonical pairing suffices.

The graphs G we obtain are covering graphs of B, G \ E0(G) = B. We have (at most) an independent sum over an
index corresponding to the faces 01 and 02 (potentially fewer if several dashed edges correspond to a higher order
cumulant). In the large N limit only planar graphs (minimal covering graphs) contribute. Furthermore, if such a planar
graph corresponds to a factorization with a fourth (or higher) order cumulant, some of the faces 01 and 02 are further
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identified, hence the number of independent sums is strictly smaller than F 01(G) + F 02(G) in this case. Indeed, a pair
of distinct edges of color 0 on a planar graph with a unique face 12 can never share both faces 01 and 02. To prove
this, consider the face 12 (see Fig. 2 for an example). An edge of color 0 partitions the vertices into two subsets, the
“interior vertices” one encounters along the face 12 when going clockwise from the black end vertex of the edge to
the white end vertex of the edge and the “exterior vertices” one encounters along the face 12 when going clockwise
from the white end vertex of the edge to the black end vertex of the edge. As the graph is planar no interior vertex can
be connected to an exterior vertex by an edge of color 0. The face 01 (resp. 02) containing the edge contains then only
interior (resp. exterior) vertices, hence any other edge of color 0 belonging to the same face 01 (resp. 02) connects
two interior (resp. exterior) vertices.

It follows that the only surviving contributions in the large N limit correspond to planar graphs in which all dashed
edges come from a second order cumulant

lim
N→∞

1

N
μN

[
Tr

[(
M

†
M

)k]] = lim
N→∞

∑
G,G\E0(G)=B

(
κ2[Mij , M̄ij ]

)k = Rk, (22)

where we used the fact that the covariance of the atomic distribution is one. �

In the case of matrices we have another clever set of observables, the eigenvalues of the matrix M
†
M, which

are non-polynomial functions of the generators. Passing to this set of variables is analog to writing the theory in a
particular gauge and the corresponding Faddev–Popov determinant results from the integration over the unitary group
with the Haar measure. The result is the well known Vandermonde polynomial.

We now relax the requirement of independence and require only trace invariance of the joint distribution of the
entries. Thus in Eq. (21)

lim
N→∞

1

N
μN

[
Tr

[(
M

†
M

)k]] = lim
N→∞

1

N

∑
n,n̄

δBnn̄

∑
π

κπ [M�n1 , M̄�̄n1̄
, . . . ,M�nk

, M̄�̄nk̄
], (23)

one substitutes for each set in the partition π the properly uniformly bounded trace invariant cumulants of Eqs (5) and
(7)

κ2k(α)[M�n1,M̄�̄n1̄
, . . . ,M̄�̄nk̄(α)

] =
∑

B(α),k(B(α))=k(α)

N−2k(B(α))+2−C(B(α))K
(
B(α),N

)C(B(α))∏
ρ=1

δ
Bρ(α)

nn̄ . (24)

The index α = 1, . . . , αmax tracks the cumulant κ2k(α) appearing in the expansion of the joint moment. The index ρ =
1, . . . ,C(B(α)) labels (at fixed B(α)) the connected components Bρ(α) in the expansion of κ2k(α) in trace invariants.

When evaluating the expectation of a trace observable, the sum over partitions π becomes a sum over graphs G.
The graph G representing a term in the sum is constructed as follows. First one draws the observable B and an invariant
B(α) (with connected components Bρ(α)) for each κ2k(α) for α = 1, . . . , αmax. Note that

∑C(B(α))
ρ=1 k(Bρ(α)) = k(α)

and
∑αmax

α=1 k(α) = k. As a matter of convention we flip all the black and white vertices of B. Note that in this graphical
representation all the original vertices of B are doubled: every vertex appears once in B and once in some Bρ(α). We
connect every vertex representing a matrix entry M in B with the vertex representing the same matrix entry M in the
corresponding Bρ(α) by a fictitious dashed edge of color 0. Some example are presented in Fig. 3.

We thus construct a bipartite closed connected graph G having three colors, 0, 1 and 2 (see Definition 1). As
we flipped the black and white vertices on B, all edges of color 0 in G will connect a black and a white vertex.
We call a graph built in this way a doubled graph. The sums over partitions π and invariants B(α) in Eqs (23) and
(24) becomes a sum over all doubled graphs G one can build starting from B which we denote G ⊃ B. Starting
from a given G one readily identifies B,Bρ(α) and C(B(α)): the observable B is the subgraph with colors 1, . . . ,D

of G having no label α, all the other subgraphs with colors 1, . . . ,D of G represent the various Bρ(α)’s, that is

G \ E0(G) = B ∪ ⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α)), and C(B(α)) is the number of connected components of G sharing the
same label α.
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Fig. 3. Doubled graphs contributing to an observable.

This graphical representation applies to all trace invariant measures. We will see in Appendix A the precise relation
between the usual Feynman graphs for perturbed Gaussian measures and these doubled graphs, but we warn the reader
that this relation is more subtle than it might appear at first sight.

Some doubled graphs contributing to the observable Tr[(M†
M)3] are given in Fig. 3. The face 12 associated to B

is the one with six vertices, while the faces 12 with four and two vertices correspond to various Bρ(α). We include
in Fig. 3 the labels α and ρ of the various connected components Bρ(α). Thus on the left hand side of Fig. 3 we
represented a contribution from two cumulants. The first one is a two point cumulant k(B(1)) = 1, and the second one
is a four point cumulant k(B(2)) = 2. The invariant for the first cumulant has a connected component C(B(1)) = 1
with two vertices k(B1(1)) = 1. The invariant for the second cumulant has also one connected component C(B(2)) = 1
but this time with four vertices k(B1(2)) = 2. On the right of Fig. 3 we presented a contribution coming from the same
two cumulants, k(B(1)) = 1, k(B(2)) = 2. The invariant for the first cumulant has again a connected component
C(B(1)) = 1 with two vertices k(B1(1)) = 1. But this time the invariant for the second cumulant has two connected
components C(B(2)) = 2, each with two vertices k(B1(2)) = 1, k(B2(2)) = 1.

To evaluate the contribution of a graph G to the expectation of an observable one must remember that we first
divide the 2k points among αmax cumulants, and subsequently the 2k(α) points in every cumulant are subdivided into
C(B(α)) connected graphs Bρ(α). As the edges of color 0 connect two copies of the same vertex, the indices of their
end points are identical, hence each l0 = (v, v̄) ∈ E0(G) contributes δn1

vn̄1
v̄
δn2

vn̄2
v̄
.

The expectation of an invariant observable becomes

1

N
μN

(
Tr

[(
M

†
M

)k])
= 1

N

∑
G⊃B,G\E0(G)=B∪⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α))

N
∑αmax

α=1 (−2k(B(α))+2−C(B(α)))
αmax∏
α=1

K
(
B(α),N

)

×
∑
n,n̄

(
δBnn̄

αmax∏
α=1

C(B(α))∏
ρ=1

δ
Bρ(α)

nn̄

) ∏
l0=(v,v̄)∈E0(G)

δn1
vn̄1

v̄
δn2

vn̄2
v̄
. (25)

The total operator (δBnn̄

∏αmax

α=1
∏C(B(α))

ρ=1 δ
Bρ(α)

nn̄ ) explains our representation in doubled graphs: one must keep track
of the observable B, the cumulants κ2k(α) and the graphs Bρ(α) in order to compute the contribution of a term to the
expectation of the observable. In particular this requires the doubling of the vertices. Substituting the trace invariant

operators δBnn̄ and δ
Bρ(α)

nn̄ Eq. (25) becomes

1

N

∑
G⊃B,G\E0(G)=B∪⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α))

N
∑αmax

α=1 (−2k(B(α))+2−C(B(α)))
αmax∏
α=1

K
(
B(α),N

)

×
∑
n,n̄

(
2∏

i=1

∏
li=(v,v̄)∈E i (B∪⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α)))

δni
vn̄

i
v̄

) ∏
l0=(v,v̄)∈E0(G)

δn1
vn̄1

v̄
δn2

vn̄2
v̄
, (26)
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and noting again that the edges of colors 1 and 2 of B ∪ ⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α)) are exactly the edges of color 1 and
2 in G, we see again that the Kronecker δs compose along the faces of colors 01 and 02 of G, thus

1

N
μN

(
Tr

[(
M

†
M

)k])
=

∑
G,G⊃B

N−1−2k+∑αmax
α=1 C(B(α))+F 01(G)+F 02(G)−2

∑αmax
α=1 (C(B(α))−1)

αmax∏
α=1

K
(
B(α),N

)
. (27)

The doubled graph G has 4k vertices, 2k coming from B and 2k coming from all the Bρ(α). It has 1 +∑αmax

α=1 C(B(α)) faces 12, one associated to the observable B, and one for each Bρ(α). Furthermore it has 2k edges of
color 0, 2k edges of color 1 and 2k edges of color 2. The Euler character of G is

4k − 6k + 1 +
αmax∑
α=1

C
(
B(α)

)+ F 01(G) + F 02(G) = 2 − 2g(G), (28)

hence the global scaling with N of a term is N−2g(G)−2
∑αmax

α=1 (C(B(α))−1). It follows that G contributes to the expecta-
tion of an observable in the large N limit if it is planar and each cumulant κ2k(α) contributes exactly one connected
invariant C(B(α)) = 1. The second condition is easy to understand for perturbed Gaussian measures. As previously
stated the disconnected invariants B(α) correspond to Feynman graphs having more than one external face. Recon-
necting the external edges on such a cumulant on the observable B leads to non-planar Feynman graphs, in spite of
the fact that the associated doubled graph (which only sees the boundary of the Feynman graph contributing to the
cumulant) is planar. This emphasizes the non-trivial relation between Feynman graphs and doubled graphs.

The planar graphs contributing to the large N limit possess cumulants of orders between 2 and 2k (each cumulant
contributing only when its associated invariant is connected), hence the large N distribution of M is not Gaussian.
The restriction of trace invariant measures for matrices to planar graphs has a different effect: one can easily show
that matrices distributed according to such measures become free in the large N limit. This is particularly transparent
in the combinatorial formulation of free probability theory of [28,34]. In the large N limit only the free cumulants
(defined by restricting the sum in Eq. (4) to non-crossing partitions) survive, and one can show that (in the large N

limit) the mixed free cumulants of a collection of matrices cancel. As one only deals with the N → ∞ limit, the
free cumulants are automatically associated to connected invariants. One example of a random matrix model whose
measure is not trace invariant is the Grosse Wulkenhaar model [17] which is only almost trace invariant.

4. Random tensors

We now go to the core of our paper and the proofs of the two theorems. We start by an account of properties of D

and D + 1 colored graphs we will use below. Most of the lemmas we present in Sections 4.1 and 4.2 can be found in
[5,20,22,24]. The rest of this section is new.

4.1. Closed D + 1-colored graphs

The connected (single trace) observables of tensor models are represented by connected D-colored graphs B. Their
expectations are evaluated in terms of D + 1-colored graphs G, having an extra color 0. We will use the shorthand
notation 0̂ ≡ {1, . . . ,D}.

Consider a connected closed D + 1 colored graph G. To simplify notation we will drop in this subsection as
much as possible G from our notation. Thus the sets of vertices, edges and faces of colors ij (Definition 2) of G are
denoted V , E and F (i,j). Furthermore we denote F = ⋃

i<j F (i,j) and F = |F |. We define the jackets [20,23,24] of
the D + 1-colored graph G.

Definition 7. A colored jacket J is a 2-subcomplex of G, labeled by a (D + 1)-cycle τ , such that:

• J and G have identical vertex sets, V(J ) = V ;
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• J and G have identical edge sets, E(J ) = E ;
• the face set of J is a subset of the face set of G: F(J ) = ⋃D

q=0 F (τq (0),τ q+1(0)).

For example the jacket associated to the cycle (0,1,2, . . . ,D) contains the faces (0,1)(1,2)(2,3) · · · (D,0). It is
evident that J and G have the same connectivity. A given jacket is independent of the overall orientation of the cycle,
meaning that the jackets are in one-to-two correspondence with (D +1)-cycles. Therefore, the number of independent
jackets is D!/2 and the number of jackets containing a given face is (D − 1)!.4

The jacket has the structure of a ribbon graph, [25], as each edge of J lies on the boundary of two of its faces.
A ribbon edge that separates the two faces, (τ−1(i), i) and (i, τ (i)) inherits the color i of the edge in G. Ribbon graphs
are well-known to correspond to Riemann surfaces [25], and so the same holds for jackets. Given this, we can compute
the Euler character of the jacket, χ(J ) = |F(J )| − |E(J )| + |V(J )| = 2 − 2g(J ), where g(J ) is the genus of the
jacket.5

Definition 8. The convergence degree (or simply degree) of a graph G is ω(G) = ∑
J g(J ), where the sum runs over

all the D!/2 distinct jackets J of G. The degree is a nonnegative integer.

Consider a jacket J of a closed, connected, (D+1) colored graph G with 2k = |V| vertices. The number of vertices
and edges of J are: |V(J )| = |V| = 2k and |E(J )| = |E | = (D + 1)k, respectively. Hence, the number of faces of J
is |F(J )| = (D − 1)k + 2 − 2g(J ). Taking into account that G has 1

2D! jackets and each face belongs to (D − 1)!
jackets we obtain

F = |F | = 1

(D − 1)!
∑
J

∣∣F(J )
∣∣ = D(D − 1)

2
k + D − 2

(D − 1)!ω(G). (29)

This equation is crucial in establishing the universality results in the large N limit of random tensor models. Of course
the same equation holds (replacing D by D − 1) for closed, connected D-colored connected graphs. Note that, as F

is an integer, ω(G) is a multiple of 2
(D−1)! .

We now consider the D-bubbles of G with colors 0̂ (i.e. the connected subgraphs of G with edges of colors
1,2, . . . ,D). We denote them B(μ). As they are D-colored graphs, they also possess jackets, which we denote by

J 0̂
(μ)

. It is rather elementary to construct the jackets of the bubbles J 0̂
(μ)

from the jackets of the graph J [20,23,24].

Let us construct the ribbon graph J 0̂ consisting of vertex, edge and face sets:

V
(
J 0̂) = V(J ) = V, E

(
J 0̂) = E(J ) \ E0(J ) = E \ E0,

(30)
F
(
J 0̂) = (

F(J ) \F (τ−1(0),0) \F (0,τ (0))
)∪F (τ−1(0),τ (0)),

that is having all the vertices of G, all the edges of G of colors different from 0 and some faces of G. For instance, for
the jacket corresponding to (0,1, . . . ,D) the ribbon graph J 0̂ has faces (1,2) · · · (D − 1,D) and (D,1). Given that
the face set of J is specified by a (D + 1)-cycle τ , the first thing to notice is that the face set of J 0̂ is specified by a
D-cycle obtained from τ by deleting the color 0. The ribbon graph J 0̂ is the union of several connected components,
J 0̂

(μ). Each J 0̂
(μ) is a jacket of a D-bubble B(μ). Conversely, every jacket of B(μ) is obtained from exactly D jackets

of G6.

4It is however sometimes more transparent to over count the distinct jackets by a factor of two associating them one to one with cycles. For example,
one can count that from the D! cycles of D + 1 colors, (D − 1)! will contain the pair ij and (D − 1)! the pair ji.
5A moment of reflection reveals that the jackets necessarily represent orientable surfaces.
6A jacket J 0̂

(μ)
of B(μ) is specified by a D-cycle (missing the color 0). On can insert the color 0 anywhere along the cycle and thus get D

independent (D + 1)-cycles.
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Lemma 1. Let G be a closed connected D + 1 colored graph and B(μ) its D-bubbles with colors 0̂. Then

ω(G) ≥ D
∑
μ

ω(B(μ)). (31)

As J 0̂
(μ) are in one-to-one correspondence with disjoint subgraphs of J we have gJ ≥ ∑

μ gJ 0̂
(μ)

. As every jacket

J 0̂
(μ) is obtained as subgraph of exactly D distinct jackets J , summing over all the jackets of G proves the lemma (see

[24] for more details).
Of particular importance later in this paper are the graphs G of degree zero, ω(G) = 0. They have been extensively

discussed in [5]. In D ≥ 3, the D + 1 colored graphs with degree zero have a very simple structure. A counting
argument proves that such a graph must have at least one face with exactly two vertices. As all the jackets must be
planar this in turn implies that the graph contains two vertices connected by exactly D edges. Albeit simple, the proof
of the second statement is somewhat convoluted.

For 2 + 1 colored graphs the degree equals the genus of the graph, hence the graphs of degree 0 are the planar
graphs. For D ≥ 3, the D + 1 colored graphs of degree zero are called melonic.

Lemma 2. Suppose D ≥ 3. If G is a closed connected D + 1 colored graph of degree zero then G has a face with
exactly two vertices.

Proof. Since G is of degree zero it has F = D(D−1)
2 k + D faces, from Eq. (29). Denote Fs the number of faces with

2s vertices (every face must have an even number of vertices). Then

F1 + F2 +
∑
s≥3

Fs = D(D − 1)

2
k + D. (32)

Let 2k
ij

(β) be the number of vertices of the βth face with colors ij . We count the total number of vertices by summing

the numbers of vertices per face
∑

β,i<j k
ij

(β) = F1 + 2F2 + ∑
s≥3 sFs = D(D+1)

2 k (as each vertex contributes to
D(D + 1)/2 faces). Substituting F2 from (32) we get

F1 = 2D +
∑
s≥3

(s − 2)Fs + D(D − 3)

2
k. (33)

Notice that on the right hand side, the first two terms yield a strictly positive contribution for any D ≥ 2, whereas the
third term changes sign when D = 3. �

This lemma explicitly breaks when D = 2: there exist planar graphs having no face with exactly two vertices. This
is the deep origin of the fact that trace invariant measures can lead to non-Gaussian matrices, but (as we will prove
below) necessarily lead to Gaussian tensors in the large N limit.

Lemma 3. If D ≥ 3 and G is a closed connected D + 1 colored graph of degree zero, then it contains a D-bubble
(i.e. subgraph with D colors) with exactly two vertices.

We emphasize that the D edges of the D-bubble with two vertices can have any colors, 1, . . . ,D but also
0,2, . . . ,D or 0,1,3, . . . ,D, etc.

Proof of Lemma 3. From the previous lemma G has a face (say of colors ij ) with exactly two vertices (say v and
v̄). If, for all q , a unique edge of color q connects v and v̄ we conclude. If the two edges of color q are different,
l
q

1 = (v, ā), l
q

2 = (a, v̄) we consider the jacket J = (. . . iqj . . .). It contains the faces (iq) and (qj). As G is of degree
zero, J is planar. We call J ′ the ribbon graph obtained from J by deleting l

q

1 and l
q

2 and welding together the faces
(iq) and (qj) at each of the vertices v, v̄, a, and ā. As l

q

1 and l
q

2 separate the same two faces (iq) and (qj), the graph
J ′ has two edges fewer, but the same number of faces as J . The Euler character of J ′ is χ(J ′) = χ(J ) + 2 = 4,
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Fig. 4. The graphs G and J , G(q)′ and JG(q)′ and G(q) and JG(q) .

hence J ′ has two planar connected components. It follows that by deleting the lines l
q

1 and l
q

2 in G one also obtains
two connected components. This is presented in Fig. 4(a).

We denote G(q)′ (respectively G̃(q)′ ) the connected component of G obtained by deleting l
q

1 and l
q

2 which does not
contain (resp. contains) the vertices v and v̄. The graph G(q)′ is presented in Fig. 4(b). Note that G(q)′ (resp. G̃(q)′ ) is
not a closed D + 1 colored graph, as the two vertices a and ā (resp. v and v̄) are not touched by edges of color q . It
can however be transformed into a genuine closed D + 1 colored graph, which we denote G(q) (resp. G̃(q)), by adding
an edge l

q

12 (resp. l̃
q

12) connecting the two vertices a and ā (resp. v and v̄). The graph G(q) is presented Fig. 4(c). Note
that G(q) (resp. G̃(q)) has at least two fewer vertices than G, namely v and v̄ (resp. a and ā).

We now show that G(q) (resp. G̃(q)) is of degree 0. Indeed any jacket JG(q) (resp. JG̃(q) ) of G(q) (resp. G̃(q)) is

obtained from the corresponding jacket J of G by deleting the lines l
q

1 and l
q

2 and the reconnecting a and ā (resp.
v and v̄) by a new line l

q

12 (resp. l̃
q

12). As all the jackets have the same connectivity, deleting l
q

1 and l
q

2 in any jacket
J = (. . . rqs . . .) always leads to a ribbon graph having two connected components denoted J ′ and J̃ ′. It follows that
for any jacket J the lines l

q

1 and l
q

2 share both faces rq and qs7. The graph with two connected components JG(q) and
JG̃(q) has the same number of lines, but two more faces then J . Thus both the connected components JG(q) and JG̃(q)

are planar, hence both G(q) and G̃(q) are of degree zero.
Note that one cannot naively iterate the argument, as the graph G(q) has an edge, l

q

12, which does not belong to G.
However, G(q) has a face of colors i′j ′ with exactly two vertices v′, v̄′. By the previous argument it must have the
form represented in Fig. 5 on the left.

Again, for all q ′, we consider the graph G(q,q ′) obtained from G(q) by erasing the two edges of color q ′ containing

v′ and v̄′, l
q ′
1 = (v′, ā′) and l

q ′
2 = (a′, v̄′) and joining a′ and ā′ by a line l

q ′
12 = (a′, ā′). The graphs G(q,0), . . . ,G(q,D)

are represented in Fig. 5 on the right. The edge l
q

12 belongs to only one of these G(q,q ′) for some q ′.
We then chose another one, say G(q,q ′′) to iterate (if for all q ′′ �= q ′ the two vertices v and v̄′ are connected by a

unique edge we obtained a D-bubble of G with exactly two vertices and conclude). The edge l
q

12 is not an edge of

7To see this, we follow the face rq (or qs) from J ′ to J̃ ′ along the line l1q . As the face closes one needs to go back from J̃ ′ to J ′ and this can be

done only along the face rq (or qs) of the line l
q
2 .
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Fig. 5. The graph G(q) and the graphs G(q,q′).

Fig. 6. The first order melonic graph and its corresponding rooted tree.

G(q,q ′′). However the new edge l
q ′′
12 (that is the new edge of color q ′′ connecting the vertices a′′ and ā′′ of G(q,q ′′)) is

an edge of G(q,q ′′). Thus all but one of the edges of G(q,q ′′) belong to G. We iterate until we reach a graph G(q,q ′′,...)

with exactly two vertices connected by D + 1 edges. Out of them D are edges of G and form a D bubble. �

4.1.1. Melons
We call two vertices connected by D edges in a graph with D + 1 colors a melon (or an internal D-dipole, not to
be confused with the D-dipole B(2)). We emphasize that a melon can have external legs of any color 0, 1 up to D.
The D internal edges of a melon with external edges of color i have colors 0,1, . . . , i − 1,1 + i, . . . ,D. Replacing a
melon by an edge corresponding to its external legs we obtain a graph of degree zero8 having two vertices fewer (and
D(D−1)

2 fewer faces). Iterating, one reduces a graph of degree zero to a graph with exactly two vertices connected by
D + 1 edges. Conversely all graphs of degree zero can be built by arbitrary insertions of melons on edges. The graphs
of degree zero are then in one to one correspondence to colored rooted D + 1-ary trees [5,22].

First order. The lowest order graph consists in two vertices connected by D + 1 edges. We represent this graph by
the tree with one vertex decorated with D + 1 leaves. A leaf is a tree edge connecting the D + 1 valent vertex to
a univalent descendant. The D + 1 leaves of the tree correspond to all the edges in the graph incident to the black
vertex v̄ (of course, in the graph, these edges are all also incident to the white vertex v). The leaves inherit the colors
of the corresponding edges in the graph. This first D + 1 valent vertex is called the root vertex (and is marked R). We
consider all the graph edges incident at the black vertex v̄ to be active. The leaves of the tree inherit this activity. See
Fig. 6 for an illustration.

Second order. At second order, D + 1 graphs contribute. They arise from inserting a melon (that is two vertices
connected by D edges) on any of the D + 1 active edges of the first order graph. Say, we insert the new melon on
the active edge of color 1. With respect to the new melon, all the graph edges incident at its black vertex are deemed
active, while the graph edge of color 1 incident at its white vertex is deemed inactive (in bold in Fig. 7). This graph
corresponds to a tree obtained from the first order tree by connecting its leaf of color 1 to a new (D + 2)-valent vertex.

8Every jacket has two fewer vertices, D + 1 fewer edges and D − 1 fewer faces, hence its genus does not change.
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Fig. 7. A second order melonic graph and its corresponding tree.

This new vertex has D + 1 leaves, one of each color. The root and the new tree vertex are joined by a tree edge of
color 1. The leaves correspond to the active edges in the graph (either of the root or on the new melon). We presented
this in Fig. 7. The inactive edge of the graph (represented in bold in Fig. 7) corresponds to the tree edge connecting
the root and the new D + 2 valent vertex (also in bold in Fig. 7). All the active edges of the graph correspond to the
leaves of the tree.

Order k + 1. We obtain the graphs at order k + 1 by inserting a melon on any of the active edges of a graph at
order k. Once again, with respect to the new melon, all graph edges incident to its black vertex are deemed active. If
the active edge on which we performed the insertion had color i, the graph edge of color i incident to the white vertex
of the new melon is deemed inactive. In terms of the trees, we represent this insertion by connecting a (D + 2)-valent
vertex, with D + 1 active leaves, to one of the active leaves of a tree at order k. The new tree edge inherits the color
of this leaf.

The 2k vertices of the graph are in two to one correspondence to the (exactly k) D + 2-valent vertices (including
the D + 1-valent root) of the tree. The (D + 1)k edges of the graph are in one to one correspondence to the (k − 1)

tree edges connecting D + 2 valent vertices (including the root) and the Dk + 1 leaves of the tree. The tree associated
to a graph is a colored version of a Gallavotti–Nicolo tree [14].

If a graph is a (D + 1)-colored melonic graph, all its subgraphs with D-colors (D-bubbles) are melonic. This
is easy to see from the construction algorithm. Moreover, the D-ary trees of the D-bubbles with colors 0̂, B(μ) are
trivially obtained from the (D + 1)-ary tree of the graph G by deleting all tree edges and leaves of color 0.

We call the graphs of degree zero described above melonic [5]. We will use below the following two lemmas.

Lemma 4. Let B be a melonic D-colored graph. Then there exists a unique melonic D + 1 colored graph G with the
same number of vertices which reduces to B by deleting all the edges of color 0.

The unique D + 1-ary tree TG with k vertices which reduces to a given D-ary tree TB with k vertices by deleting
all the tree edges and leaves of color 0 is the tree TB decorated by a leaf of color 0 on each of its vertices.

Lemma 5. Let B be a melonic D-colored graph with 2k vertices. Then there exists a unique melonic D + 1 colored
graph G with 4k vertices which reduces to B by deleting all the edges color 0, such that no two vertices of B are
connected (when seen as vertices in G) by an edge of color 0.

As no two vertices of B are connected (in G) by an edge of color zero, if follows that none of the tree vertices of
the tree TB associated to B (when seen as a subtree of the tree TG associated to G) has a leaf of color 0. Therefore all
the vertices in TB must be connected in TG to another vertex by a tree edge of color 0. The tree TG , obtained from TB
by decorating each vertex with an edge of color 0 (and a new end vertex), is unique and so is its associated graph G
with 4k vertices.

4.2. Open graphs and the boundary graph

We have discussed so far closed connected D + 1 colored graphs. We will now present open D + 1 colored graphs,
that is graphs having some external edges.

Definition 9. A bipartite open D + 1-colored graph is a graph G = (V(G),E(G)) with vertex set V(G) and edge set
E(G) such that:
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Fig. 8. Open graphs and their boundary graphs.

• V(G) is bipartite, i.e. there exists a partition of the vertex set V(G) = A(G) ∪ Ā(G), such that for any element
l ∈ E(G), then l = (v, v̄) with v ∈ A(G) and v̄ ∈ Ā(G). Their cardinalities satisfy |V(G)| = 2|A(G)| = 2|Ā(G)|. We
call v ∈A(B) the white vertices and v̄ ∈ Ā(B) the black vertices of B.

• The white (black) vertices are of two types, internal vertices and external vertices, A(G) = Aint(G) ∪ Aext(G),
Ā(G) = Āint(G) ∪ Āext(G). The internal vertices are D + 1 valent while the external vertices are 1-valent.

• The edge set is partitioned into D subsets E(B) = ⋃D
i=1 E i (B), where E i (B) = {li = (v, v̄)} is the subset of edges

with color i. Furthermore the set of edges of color 0 is partitioned into internal and external edges of color 0,
E0(G) = E0

int(G)∪E0
ext(G), such that the internal edges connect two internal vertices and the external edges connect

an external and an internal vertex.9 All the edges of color i �= 0 are internal.
• The edges incident to a D + 1 valent internal vertex have distinct colors, while the edge incident to an external

1-valent vertex has color 0.

Some examples of open 3 + 1 colored graphs are presented on the left in Fig. 8. Both graphs have four external
edges and four external vertices.

Faces are still defined according to Definition 2 as subgraphs with two colors. For open D + 1 colored graphs, such
subgraphs fall in two categories. Either they are bi-colored circuits of edges (as for closed graphs) in which case they
contain only internal edges and internal vertices and we call them internal faces. Or they are chains of edges, in which
case they necessarily contain external edges and external vertices and we call them external faces. Note that, as the
external edges have color 0, only the faces of colors 0i can be external. We partition the set of faces of colors 0i into
the set of internal faces of colors 0i, denoted F (0,i)

int (|F (0,i)
int | = F 0i

int) and the set of external faces of colors 0i, denoted

F (0,i)
ext (|F (0,i)

ext | = F 0i
ext).

The external faces f ∈ F (0,i)
ext necessarily start and end on two external vertices u and ū, f = (u, ū). For every

graph G we build the boundary graph ∂G having a vertex u (resp. ū) for every external vertex of G and an edge of
color i joining a u and a ū for every external face f = (u, ū) ∈ F (0,i)

ext of G. On the right in Fig. 8 we represented the
boundary graphs ∂G of the two graphs G. The boundary graph is a D colored graph and represents a tensor invariant,
thus

∏
f =(u,ū)∈⋃i F

(0,i)
ext

δni
un̄i

ū
= δ∂G

n,n̄.

Note that, as it is that case in the second example, in spite of the fact that G itself is connected, the boundary
graph ∂G can be disconnected. We emphasize that, while the internal faces of an open graph are circuits of edges, the
external faces are chains of edges.

4.3. Gaussian distribution for tensors

We now compute the large N trace invariant moments of the Gaussian distribution for a random tensor

〈
TrB(T, T̄)

〉 = ∫ ∏
�n

(
ND−1

σ 2

dT�n dT̄�n
2πı

)
e−ND−1(1/σ 2)

∑
�n�̄n T�nδ�n�̄nT̄�̄n TrB(T, T̄), (34)

9Or two external vertices.
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with the connected trace invariant operators

TrB(T, T̄) =
∑
n,n̄

δBnn̄

∏
v,v̄∈V(B)

T�nv
T̄ �̄nv̄

, δBnn̄ =
∏

li=(v,v̄)∈E i (B)

δni
v n̄i

v̄
, (35)

indexed by connected graphs B with colors 1, . . . ,D having 2k(B) vertices (and Dk(B) edges). Assume σ = 1. The
number of faces of the D-colored graph associated to an observable is computed using Eq. (29) in terms of its degree

∑
1≤i<j

F ij (B) = (D − 1)(D − 2)

2
k(B) + (D − 1) − 2

(D − 2)!ω(B). (36)

The Gaussian expectation is a sum over contractions. As in the matrix case, we represent two tensors connected by
a covariance as a dashed edge to which we assign the color 0. We denote the full graph, including the color 0 by G. An
observable is a sum over graphs G which restrict to B by erasing the dashed edges of color 0. We already encountered
such graphs in the case of matrices.

Definition 10. A D + 1 colored graph G is called a covering graph of B if it reduces to B by erasing the edges of
color 0, G \ E0(G) = B.

Every face of colors 0i in G brings a free sum, hence a factor N . Every dashed edge generated by the covariance
brings a factor 1

ND−1 . The moments of the Gaussian are written

〈
TrB(T, T̄)

〉 = ∑
G,G\E0(G)=B

N−k(B)(D−1)N
∑

i F 0i (G)

=
∑

G,G\E0(G)=B
N

−k(B)(D−1)+∑
0≤i<j F ij (G)−∑

1≤i<j F ij (G)
. (37)

Note that
∑

0≤i<j F ij (G) is the total number of faces of the graph G, while
∑

1≤i<j F ij (G) = ∑
1≤i<j F ij (B) is the

number of faces of B. Also we have k(G) = k(B). Using Eq. (29) and (36), we get〈
TrB(T, T̄)

〉 = ∑
G,G\E0(G)=B

N1−(2/(D−1)!)ω(G)+(2/(D−2)!)ω(B). (38)

As both 2
(D−1)!ω(G) and 2

(D−2)!ω(B) are integers, the scaling with N of a graph G contributing to the expectation
of a trace invariant is always an integer. By Lemma 1, ω(G) ≥ Dω(B), thus

1 − 2

(D − 1)!ω(G) + 2

(D − 2)!ω(B) = 1 − 2

D!ω(G) − 2

D(D − 2)!
[
ω(G) − Dω(B)

] ≤ 1 − 2

D!ω(G). (39)

4.3.1. Melonic observables
From Eq. (38) and (39) it follows that in the large N limit the expectation of an observable scales at most like N , and
it scales like N only if there exists a melonic graph G which restricts to B by erasing the edges of color zero. This
implies that B itself must be melonic and, due to Lemma 4, it implies that G is unique. The expectation of a melonic
observable B is therefore in the large N limit

lim
N→∞N−1〈TrB(T, T̄)

〉 = 1, (40)

reproducing Eq. (10) with Ω(B) = 0 and R(B) = 1. Hence the melonic observables are the only observables of
convergence order 0 in and their expectation at leading order is 1.
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Fig. 9. Observables of lower order for D = 3 and minimal covering graphs.

4.3.2. Arbitrary observables
Consider now a generic observable B. The leading order contribution to Eq. (38) is given by the covering graphs G of
B having minimal degree.

Definition 11. A covering graph of B of minimal degree Gmin,

Gmin \ E0(Gmin) = B, with ω
(
Gmin) = min

G,G\E0(G)=B
ω(G), (41)

is called a minimal covering graph of B. Equivalently, the minimal covering graphs of B are the covering graphs
having the maximal possible number of faces

∑
i F

0i (G).

Thus for all B,

lim
N→∞N−1+Ω(B)

〈
TrB(T, T̄)

〉 = R(B), (42)

with the convergence order of the observable Ω(B) = 2
(D−1)!ω(Gmin)− 2

(D−2)!ω(B) and R(B) the number of minimal
covering graphs of B. Take for example D = 3. Both invariants depicted in Fig. 9 are of order Ω(B) = 1 and the num-
ber of minimal covering graphs is in both cases R(B) = 3. As already mentioned, for matrices (D = 2) the minimal
covering graphs are exactly the planar graphs with one face of colors 12. Note that Lemma 4 can be reformulated as
follows: for every melonic observable B, there exists a unique minimal covering graph G.

In general determining the degree of the minimal covering graphs (hence the order Ω(B) of an observable), and
their number (hence R(B)) is a difficult problem. This is the reason for which here and below we prefer to treat the mel-
onic observables and the rest of the observables separately. Indeed, in order to show that a tensor distributed with some
μN converges in distribution to a Gaussian tensor we will show that for any observable one can establish a large N limit

lim
N→∞N−1+Ω(B)μN

(
TrB(T, T̄)

) = R(B), (43)

with Ω(B) and R(B) identical with those of the Gaussian distribution Eq. (42). However for most observables we will
prove this indirectly, without actually computing either Ω(B) or R(B). It is instructive then to see that for melonic
observables one can establish by an alternate, direct route Ω(B) = 0 and R(B) = 1 both for the i.i.d. and for the
properly uniformly bounded trace invariant case.

We will need the following result.

Lemma 6. Let Gmin be a minimal covering graph of the D colored graph B with D odd (respectively even). Then any
two edges of color 0 of Gmin, l0

1 = (v, v̄), l0
2 = (w, w̄) ∈ E0(Gmin) share at most D−1

2 (respectively D
2 ) faces of colors

0i for all i.

Proof. Denote the number of faces of colors 0i shared by l0
1 = (v, v̄) and l0

2 = (w, w̄) by q . We build the open graph
G̃min obtained from Gmin by deleting the edges (v, v̄) and (w, w̄) and adding four external vertices ˜̄v, ṽ, ˜̄w and w̃

hooked to v, v̄, w and w̄ respectively by external edges of color 0, as in Fig. 10.
The boundary graph of G̃min, ∂G̃min is a D colored graph with four vertices. Hence it necessarily has the structure

presented in Fig. 10 on the right, with q edges connecting ṽ with ˜̄w (respectively ˜̄v and w̃) and D−q edges connecting
ṽ with ˜̄v (respectively ˜̄w and w̃).
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Fig. 10. A minimal covering graph Gmin, the opened graph G̃min, the boundary graph ∂G̃min and Gmin,×.

Consider then the graph Gmin,× obtained from G by replacing the edges (v, v̄), (w, w̄) by two new edges of color
zero (v, w̄), (w, v̄), like in Fig. 10 on the second line. It is also a covering graph of B.

The number of faces of colors 0i of Gmin and Gmin,× are respectively∑
i

F 0i
(
Gmin) =

∑
i

F 0i
int

(
G̃min)+ q + 2(D − q),

∑
i

F 0i
(
Gmin,×) =

∑
i

F 0i
int

(
G̃min)+ D − q + 2q. (44)

As Gmin is a minimal covering graph of G, we have∑
i

F 0i
(
Gmin) ≥

∑
i

F 0i
(
Gmin,×) ⇒ 2q ≤ D. (45)

�

Note that this lemma also holds for D = 2.

Lemma 7. The convergence order is a positive number. Moreover, for any B, there exists an infinite family of graphs
B′ such that Ω(B) = Ω(B′). Finally, the only normalization of the Gaussian such that both statements hold is the one
of Eq. (34).

Proof. From Eq. (39), Ω(B) ≥ 2
D!ω(Gmin) ≥ 0. Consider a graph B and the graph B′ obtained by inserting a D − 1

melon (say of colors 2,3, . . . ,D) on one of the edges (say of color 1) of B. Call v and v̄ the vertices of this melon.
Consider a covering graph of B′, G′, such that the two vertices v and v̄ are connected by an edge of color 0 in G′.

All minimal covering graphs of B′ are of this kind: any covering graph of B′ such that v and v′ are not connected by
an edge of color 0 would have two edges of color 0 sharing D − 1 faces, which is impossible by Lemma 6 thus,

Ω
(
B′) = 2

(D − 1)! min
G′,G′\E0(G′)=B′
(v,v̄)∈E0(G′)

ω
(
G′)− 2

(D − 2)!ω
(
B′). (46)

By reducing the melon v and v′, B′ becomes B and G′ becomes some covering graph G of B. All covering graphs of
B can be obtained starting from some G′ of this kind. Moreover, as B is obtained from B′ by reducing a D − 1 dipole
and G from G′ by reducing a D dipole ω(B′) = ω(B) and ω(G′) = ω(G). Thus

Ω(B) = 2

(D − 1)! min
G,G\E0(G)=B

ω(G) − 2

(D − 2)!ω(B)

= 2

(D − 1)! min
G′,G′\E0(G′)=B′
(v,v̄)∈E0(G′)

ω
(
G′)− 2

(D − 2)!ω
(
B′) = Ω

(
B′). (47)

By inserting D − 1 melons arbitrarily on the edges of B one then builds an infinity of graphs B′ with Ω(B′) = Ω(B).
This proves the first part of the lemma.
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For the second part, suppose that one choses a different normalization of the Gaussian measure(∏
�n

Nν dT�n dT̄�n
2πı

)
e−Nν

∑
�n�̄n T�nδ�n�̄nT̄�̄n . (48)

Then, the order appearing in a term of Eq. (38) becomes

N
k(B)(D−1−ν)+1− 2

(D−1)! ω(G)+ 2
(D−2)! ω(B)

. (49)

The order of convergence of an observable would then be

Ω(ν)(B) = 2

(D − 1)! min
G,G\E0(G)=B

ω(G) − 2

(D − 2)!ω(B) + k(B)
(
ν − (D − 1)

)
, (50)

which is positive for melonic B only if ν ≥ D − 1. Moreover, if ν > D − 1, then there exists only one observable with
scaling ν − (D − 1), the D dipole itself. �

Different scaling of the Gaussian can make sense, but only if one decides to look at subsets of observables. Consider
for instance a tensor with 4 indices. One can decide to only consider tensor observables in which the tensor effectively
acts as a N2 × N2 matrix, that is the indices (1,2) and the indices (3,4) are always contracted between the same
tensors. A scaling ν = 2 leads to a well defined large N limit for these observables (this is just the usual large N

limit of matrices). However other tensor observables do not behave well with this scaling: the melonic observables are
arbitrarily divergent. The importance of the scaling ND−1 of the Gaussian is that it renders all the tensor observables
convergent in the large N limit.

4.4. Proof of Theorem 1

The proof follows closely the one for matrices. Set the covariance of the atomic distribution to σ 2 = 1. Consider the
observable associated to a graph B with 2k vertices

μN

(
TrB(T, T̄)

) = 1

N(D−1)k

∑
n,n̄

δBn,n̄

∑
π

κπ [T�n1 , T̄�̄n1
, . . . , T̄�̄nk

]. (51)

Again we represent all the second order moments as dashed edges of color 0. Again we deal with the higher order
moments in a non-canonical way, by representing them as dashed edges in some pairing of T and T̄ , but with further
identifications one needs to track. The expectation can be written as a sum over covering graphs of B. The trace
invariant operator composes with the identifications given by the cumulants and the faces 0i bring each an N . One
obtains

μN

(
TrB(T, T̄)

) =
∑

G,G\E0(G)=B
N−k(D−1)N

∑
i F 0i (G)Ncδ

(∏
κ
)

=
∑

G,G\E0(G)=B
N

−k(D−1)+∑
0≤i<j F ij (G)−∑

0<i<j F ij (G)
Ncδ

(∏
κ
)
, (52)

where (
∏

κ) is a product over the cumulants associated to a graph. Note that if some of the edges in E0(G) correspond
to a higher order cumulant, all the indices of the faces 0i to which this edges belong are identified. These further
identifications either play no role (if the indices of the faces 0i on the edges are already identified in G), or they reduce
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the number of independent sums, hence total scaling in N is strictly smaller than −k(D − 1) + ∑
0≤i<j F ij (G) −∑

0<i<j F ij (G). We denote the extra suppression in N generated by such supplementary identifications by Ncδ with

cδ ≤ 0. Again
∑

0<i<j F ij (G) = ∑
0<i<j F ij (B).

The scaling with N of a term in this sum is therefore at most

1 − 2

(D − 1)!ω(G) + 2

(D − 2)!ω(B) ≤ 1 − 2

D!ω(G), (53)

like in Eq. (39). The graphs G are covering graphs of B, and the presence of a higher order cumulant (potentially)
brings some extra suppression at large N .

4.4.1. Melonic observables: Direct computation
We first consider the case when the bound (53) is saturated. It follows that G is a melonic graph, and consequently B
is melonic also.

Two edges of color 0 in a melonic graph G having a unique bubble B of colors 1, . . . ,D cannot share all their D

faces of colors 0i. Indeed G is a covering graph of B, and, as it has degree zero, it is also minimal, thus by Lemma 6
any two edges can share at most (D − 1)/2 (or D/2) faces of colors 0i. It follows that all the edges of color 0 of G
represent a second order cumulant (the presence of a higher order cumulant strictly decreases the scaling in N ).

From Lemma 4, G is unique, thus at first order in N exactly one graph G contributes and all edges of color 0 of G
represent a second order cumulant, hence

lim
N→∞N−1+Ω(B)μN

(
TrB(T, T̄)

) = R(B), (54)

with Ω(B) = 0 and R(B) = 1.

4.4.2. Arbitrary observables
We now deal with arbitrary observables. For all B only the minimal covering graphs contribute at leading order to
Eq. (52)

μN

(
TrB(T, T̄)

) =
∑

Gmin,Gmin\E0(G)=B
N−k(D−1)N

∑
i F 0i (G)Ncδ

(∏
κ
)(

1 + O
(
N−1)). (55)

Again, the bound in Eq. (53) is saturated and we get a contribution from the corresponding Gmin above only if cδ = 0.
Again, if G is a minimal covering graph of B, no two edges of color 0 share all their faces, hence if G possesses at
least two edges coming from a higher order cumulant cδ < 0.

The graphs contributing to Eq. (55) are therefore the minimal covering graphs of B such that all their edges of color
0 correspond to a second order cumulant. Then

lim
N→∞N−1+Ω(B)μN

(
TrB(T, T̄)

) = R(B), (56)

with Ω(B) = 2
(D−1)!ω(Gmin)− 2

(D−2)!ω(B) and R(B) the number of minimal covering graphs of B (as every minimal
covering graph contributes exactly once), reproducing the moments of the Gaussian distribution. �

4.5. Proof of Theorem 2

Following the discussion of the trace invariant measures for matrices, the expectation of an observable B with 2k

vertices for a trace invariant measure for tensors,

μN

(
TrB(T, T̄)

) =
∑
n,n̄

δBnn̄

∑
π

κπ [T�n1 , T̄�̄n1
, . . . , T̄�̄nk

], (57)
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is written as a sum over doubled graphs G ⊃ B generalizing (25)

μN

(
TrB(T, T̄)

)
=

∑
G⊃B,G\E0(G)=B∪⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α))

N(−2(D−1)k+Dαmax−∑αmax
α=1 C(B(α)))

×
αmax∏
α=1

K
(
B(α),N

)∑
n,n̄

(
D∏

i=1

∏
li=(v,v̄)∈E i (B∪⋃αmax

α=1 (
⋃C(B(α))

ρ=1 Bρ(α)))

δni
v n̄i

v̄

) ∏
l0=(v,v̄)∈E0(G)

(
D∏

i=1

δni
vn̄i

v̄

)
. (58)

Recall that the subgraphs with colors 1, . . . ,D of the doubled graph G fall in two categories. One of them, B (having
no label α), corresponds to the initial observable, while the others Bρ(α) correspond to the various cumulants κ2k(α).
These graphs are connected by dashed edges of color 0 and, like for random matrices, the Kronecker δs compose
along the faces with colors 0i. The expectation of the observable is written as a sum over all doubled graphs which
contain B

μN

(
TrB(T, T̄)

) =
∑
G⊃B

N−2(D−1)k+Dαmax−∑αmax
α=1 C(B(α))+∑

i F 0i (G)
αmax∏
α=1

K
(
B(α),N

)
. (59)

Using again the fact that the number of faces of colors 0i is computed as the total number of faces minus the ones
which don’t have the color 0, the scaling with N is computed further

−2(D − 1)k + Dαmax −
αmax∑
α=1

C
(
B(α)

)+
∑

0≤i<j

F ij (G) −
∑

0<i<j

F ij (G). (60)

Taking into account that each face with colors ij,0 < i < j belongs either to B or to some Bρ(α),
∑

0<i<j F ij (G) =∑
0<i<j F ij (B) + ∑αmax

α=1
∑C(B(α))

ρ=1 F ij (Bρ(α)) the scaling is computed to

−2(D − 1)k + Dαmax −
αmax∑
α=1

C
(
B(α)

)+
(

D(D − 1)

2
k(G) + D − 2

(D − 1)!ω(G)

)

−
(

(D − 1)(D − 2)

2
k(B) + D − 1 − 2

(D − 2)!ω(B)

)

−
αmax∑
α=1

C(B(α))∑
ρ=1

(
(D − 1)(D − 2)

2
k
(
Bρ(α)

) + D − 1 − 2

(D − 2)!ω
(
Bρ(α)

))
(61)

and recalling that the doubled graph G has 4k vertices, k(G) = 2k while B has 2k vertices, k(B) = k and∑αmax

α=1
∑C(B(α))

ρ=1 k(Bρ(α)) = k we obtain

μN

(
TrB(T, T̄)

)
=

∑
G⊃B

αmax∏
α=1

K
(
B(α),N

)
× N

1−(2/(D−1)!)ω(G)+(2/(D−2)!)ω(B)+(2/(D−2)!)∑αmax
α=1

∑C(B(α))
ρ=1 ω(Bρ(α))−D

∑αmax
α=1 (C(B(α))−1)

. (62)
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As B and Bρ(α) are all the subgraphs (bubbles) of colors 0̂ of the graph G, and using Lemma 1, we bound the scaling
with N of G by

N1−(2/D!)ω(G)−D
∑αmax

α=1 (C(B(α))−1). (63)

4.5.1. Melonic observables: Direct computation
Again we first discuss the case when the bound in Eq. (63) is saturated. Then G is a melonic graph such that every
cumulant κ2k(α) is represented by an unique connected invariant, C(B(α)) = 1.

As G is melonic, B must be melonic. Furthermore G has 4k vertices, 2k of them belonging to B and the other 2k

to the invariants Bρ(α) (coming from the cumulants κ2k(α)), and all edges of color 0 connect some vertex in B with a
vertex belonging to one of the Bρ(α)’s. By Lemma 5, G is unique. Moreover its associated tree is the tree of B with all
vertices decorated by edges of color 0 ending in a tree vertex corresponding to some Bρ(α), hence all Bρ(α) = B(2).
It follows that for melonic bubbles B

lim
N→∞N−1μN

(
TrB(T, T̄)

) =
(

lim
N→∞K

(
B(2),N

))k(B)

, (64)

reproducing the expectation values of melonic observables of a Gaussian distribution of covariance K(B(2)) =
limN→∞ K(B(2),N).

4.5.2. Arbitrary observables
Consider now an arbitrary observable B. Note that if some of the connected components Bρ(α) come from the same
cumulant (C(B(α)) > 1), the contribution of the doubled graph G in Eq. (62) is strictly suppressed with respect to the
one coming from the same doubled graph, but with all C(B(α)) = 1. Thus at leading order in N , we get

μN

(
TrB(T, T̄)

) =
∑
G⊃B

∏
B1(α)

K
(
B1(α),N

)
× N1−(2/(D−1)!)ω(G)+(2/(D−2)!)ω(B)+(2/(D−2)!)∑αmax

α=1 ω(B1(α)), (65)

where B1(α) is the unique connected component of the graph representing the cumulant κ2k(α).
Among the doubled graphs G ⊃ B contributing, some represent a minimal covering graph Gmin of B decorated by

a two point cumulant on all the edges of color 0 (that is every edge (a, ā) of color 0 in the minimal covering graph is
replaced by two new edges of color 0, (a, v̄) and (v, ā) and furthermore the vertices v and v̄ are connected by D edges,
one for each color 1, 2, up to D). We denote such a graph Gmin ∪ ⋃

E0(Gmin)B(2). In this case every cumulant is a D-

dipole B1(α) = B(2). We note that ω(B(2)) = 0 (as the D-dipole is the first melonic graph with D colors). Moreover,
Gmin ∪ ⋃

E0(Gmin)B(2) has D(D−1)
2 k(Gmin) extra faces with respect to Gmin (all the faces of colors 0 < i < j made by

edges of the various B(2) insertions) and 2k(Gmin) extra vertices (two vertices for each B(2) insertion), hence by Eq.
(29) ω(Gmin ∪⋃

E0(Gmin)B(2)) = ω(Gmin). Separating these terms among the terms contributing to the expectation we
get

μN

(
TrB(T, T̄)

) =
∑

Gmin,Gmin\E0(Gmin)=B

[
K
(
B(2),N

)]k(B)
N1−(2/(D−1)!)ω(Gmin)+(2/(D−2)!)ω(B) + Rest, (66)

therefore, provided that the rest of the terms are subleading in 1/N , we get

lim
N→∞N−1+Ω(B)μN

(
TrB(T, T̄)

) =
[

lim
N→∞K

(
B(2),N

)]k(B)

R(B), (67)

with Ω(B) = 2
(D−1)!ω(Gmin)− 2

(D−2)!ω(B) and R(B) the number of minimal covering graphs of B, reproducing large

N moments of the Gaussian distribution of covariance K(B(2)) = limN→∞ K(B(2),N).
To conclude we now prove that all the other terms contributing to the expectation are strictly suppressed in 1/N .

Among these terms some represent non-minimal covering graphs of B decorated by insertions of B(2) on all edges of
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Fig. 11. The graphs G and G̃.

color 0, Gn.min ∪ ⋃
E0(Gn.min)B(2). The contribution of such graphs is of the same form as the terms made explicit in

Eq. (66) but with ω(Gmin) replaced by ω(Gn.min) > ω(Gmin), hence they are suppressed.
Consider now that G has at least a higher order cumulant B1(α) �= B2. The scaling with N of G is, from Eq. (59)

(recall that C(B(α)) = 1),

−2(D − 1)k + (D − 1)αmax +
∑

i

F 0i (G). (68)

Consider two edges of color 0, (v, ā) and (a, v̄) touching two vertices v and v̄ connected by an edge of color j of
B1(α). We will compare the scaling of G with the one of the graph G̃ obtained by reconnecting the two edges of color
0 into an edge of color 0, namely (a, ā), with a B(2) insertion, and reconnecting all the other edges touching v and v̄

respecting the colors10 (see Fig. 11). We consider the two point subgraph B(2) as coming from a different cumulant in
G̃.

The graph G̃ is also a doubled graph G̃ ⊃ B, having α̃max = αmax + 1, and
∑

i F
0i (G̃) ≥ ∑

i F
0i (G) − (D − 1) (as

the face of colors 0j is not affected by this change, and all the other D − 1 faces 0q touching v and v̄ can at most
merge two by two), thus

−2(D − 1)k + (D − 1)αmax +
∑

i

F 0i (G) ≤ −2(D − 1)k + (D − 1)α̃max +
∑

i

F 0i (G̃), (69)

and equality holds only if all the faces of colors 0q , for all q �= j touching v and v̄ are merged after this reduction.
Iterating we reduce the order of all cumulants and obtain a doubled graph representing a covering graph Gfinal of B
with two point insertions B(2) on all edges, Gfinal ∪⋃

E0(Gfinal)B(2).
At the last step we reduced a four point cumulant connected to the rest of the graph by four edges of color 0 namely

(v, ā), (a, v̄) and another two edges, say (b, w̄) and (w, b̄). In order for Eq. (69) to hold with an = sign (if not the
contribution of G is strictly suppressed with respect to the one of Gfinal ∪⋃

E0(Gfinal)B(2)), it follows that the two edges

of Gfinal, (a, ā) and (b, b̄) (obtained after eliminating the insertions B(2) in Gfinal ∪⋃
E0(Gfinal) B(2)) share all the D − 1

faces of colors 0q for q �= j . Hence from Lemma 6 the graph Gfinal cannot be minimal. In all cases the contribution of
G is strictly suppressed with respect to the one of minimal covering graphs decorated by B(2) insertions thus Eq. (67)
always holds. �

Appendix A: Perturbed Gaussian measures

Our goal in this appendix is to present a properly uniformly bounded trace invariant probability distribution for which
Theorem 2 applies. We first discuss in some detail a large class of probability measures for tensors, the perturbed
Gaussian measures, for which a plausibility argument (a “perturbative theorem” in physics terms) suggests that they
should be properly uniformly bounded. These measures appear naturally in physics and describe random D dimen-
sional triangulations [22,24]. In the second part of the appendix we go further and prove that a particular example of
probability distribution in this class is indeed properly uniformly bounded.

10If there are several edges (of colors different from 0) connecting v and v̄ in G, we delete them. If B1(α) divides in several connected components

under this procedure, we associate a different label α to each of them (i.e. we consider each of them as coming from a different cumulant in G̃).
Both these cases give strictly subleading contributions.
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A perturbed Gaussian measure is defined by an action

S(T, T̄) =
∑

�n
T�nδ�n�̄nT̄�̄n +

∑
H

tH TrH(T, T̄),

(70)

dμN = 1

Z({tH},N)

(∏
�n

ND−1 dT�n dT̄�n
2πı

)
e−ND−1S(T,T̄),

with Z({tH},N) a normalization constant. We consider only the case when all H are connected graphs with D colors,
hence the most general “single trace” model. The generating function of the moments of the perturbed Gaussian
distribution is

Z
(
J, J̄ ; {tH},N) =

∫ (∏
�n

ND−1 dT�n dT̄�n
2πı

)
e−ND−1(S(T,T̄)−∑

�̄n T̄�̄nJ�̄n−∑
�n TnJ̄n), (71)

and the generating function of the cumulants (connected moments) is W(J, J̄ ; {tH},N) = lnZ(J, J̄ ; tH,N),

κ(T�n1 , T̄�̄n1
, . . . ,T�nk

, T̄�̄nk
) = N−2k(D−1) ∂(2k)

∂J̄�n1 ∂J�̄n1
· · · ∂J̄�nk

∂J�̄nk

W(J, J̄ ;λ,N)

∣∣∣∣
J=J̄=0

. (72)

There are two levels of precision at which one can study the perturbed Gaussian measures: the perturbative level
and the constructive level.
Perturbative theorem. The perturbative treatment consists in performing the Taylor expansion of the moments and the
cumulants of the distribution in tH in a neighborhood of tH = 0 and worry about the convergence of the expansion
later. The terms of these expansions are indexed by Feynman graphs (see for instance [30] for a detailed introduction to
Feynman graphs). We will review the Feynman graph representation in Section A.1 and show by standard techniques
that the cumulants of the measure in Eq. (70) write as

κ(T�n1 , T̄�n1 , . . . , T̄�̄nk
) =

∑
B=⋃C(B)

ρ=1 Bρ

K(B,μN)

C(B)∏
ρ=1

δ
Bρ

nn̄ , (73)

where B runs over all closed D colored graphs with 2k vertices and C(B) denotes the number of connected compo-
nents (labeled Bρ ) of B. Moreover K(B,μN) is given by

K(B,μN) =
∑

G,∂G=B

(
Q(G)∏
H nH(G)!

)(∏
H

(−tH)nH(G)

)
AG(N),

(74)
AG(N) = N(D−1)H(G)−(D−1)E0(G)+∑

i F 0i
int(G),

where G runs over all D + 1 open colored connected graphs with 2k external vertices (Definition 9) whose boundary
graph is B. For every G, H(G) runs over its subgraphs with colors 1,2, . . . ,D and E0(G) = |E0(G)|, F 0i

int(G) and
H(G) = |H(G)| denote the total number of edges of color 0 (including the 2k external edges), internal faces of colors
0i of G, and respectively subgraphs. The scaling with N is captured by the amplitude AG(N) of the graph G. Finally,
the product over H runs over all the graphs with colors 1,2, . . . ,D and nH(G) denotes the number of times the graph
H appears as a subgraph of G. The number Q(G) is the number of contraction schemes leading to the graph G (i.e.
the number of times G is obtained by adding lines of color 0 starting from a fixed set of subgraphs H(G), see more
details in Section A.1).

It follows that (the perturbative expansions of) the cumulants of the measure Eq. (70) are trace invariants. The first
result we prove is

Theorem 4 (Perturbative theorem). For every open, connected, D + 1 colored graph G, the amplitude AG(N) is
bounded by

AG(N) ≤ N−2(D−1)k(∂G)+D−C(∂G). (75)
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That is, each term in the perturbative expansion of any cumulant of a perturbed Gaussian measure is properly
uniformly bounded. Although this result is insufficient to claim that such measures are properly uniformly bounded,
it constitutes a good indication that they might be. To conclude one still needs to resum the series

K(B,N) =
∑

G,∂G=B

(
Q(G)∏
H nH(G)!

)(∏
H

(−tH)nH(G)

)
O(G,N),

O(G,N) ≡ AG(N)

N−2(D−1)k(∂G)+D−C(∂G)
≤ 1. (76)

This is notoriously difficult, as the perturbation series is not summable: the number of terms (i.e. of graphs) grows
too fast. However, in many cases, the perturbation series turns out to be Borel summable (to be precise Borel–Le
Roy, or k-summable in the mathematical literature [26], of an order fixed by the maximal degree monomial in the
perturbation of the Gaussian measure).

We stress that, whenever the perturbative series can be resummed, the scaling of the full resummed cumulant
reproduces the perturbative scaling bound of Theorem 4. This is due to the fact that the scaling with N in Eq. (76)
is relegated to the factors O(G,N) ≤ 1, while the difficulties of the resummation have a completely different origin,
namely the proliferation of the number of graphs. By Theorem 2 all the perturbed Gaussian measures for which the
perturbation series can be resummed become Gaussian in the large N limit. It is however naive to conclude that the
large N limit of such models is trivial. The covariance of the large N Gaussian, which is the large N expectation of the
D-dipole observable B(2), is the full resummed two point function of the model, and has a very non-trivial dependence
on the parameters tH [6].
Constructive theorems. The resummation of the perturbative series requires a set of techniques quite different from the
ones employed in the rest of this paper, amounting to a research field in itself: constructive field theory [15]. We will
therefore treat in the second part of this appendix at the constructive level only a particular example of a perturbed
Gaussian measure. The techniques we present here (generalizing the one introduced in [31] to tensors) should be
further refined along the lines of [32] to establishing proper uniform boundedness for stable (convex) polynomially
perturbed Gaussian measure.

We will denote the indices either as �n or as n1�α with �α = n2, . . . , nD . We treat the case of the simplest quartically
perturbed Gaussian measure.

S(4)(T, T̄) =
∑
n1 �α

Tn1 �αδn1n̄1δα �̄αT̄n̄1 �̄α + λ
∑

n1 �α,n̄1 �̄α,m1 �β,m̄1 �̄β
Tn1 �αT̄m̄1 �̄αTm1 �β T̄n̄1 �̄βδn1n̄1δ�α �̄αδm1m̄1δ

β �̄β,

(77)

dμ
(4)
N = 1

Z(λ,N)

(∏
�n

ND−1 dT�n dT̄�n
2πı

)
e−ND−1S(4)(T,T̄).

The quartic perturbation corresponds to the melonic invariant (which we denote B(4)) whose graph is represented in
Fig. 12.

The generating functions of the moments and cumulants of μ
(4)
N are

Z(J, J̄ ;λ,N) =
∫ (∏

�n
ND−1 dT�n dT̄�n

2πı

)
e
−ND−1(S(4)(T,T̄)−∑

n̄1 �̄β T̄
n̄1 �̄βJ

n̄1 �̄β−∑
n1 �β T

n1 �β J̄
n1 �β)

,

(78)
W(J, J̄ ;λ,N) = lnZ(J, J̄ ;λ,N).

Fig. 12. The graph of the quartic perturbation B(4) .
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Fig. 13. A plane tree with marked vertices.

We will give an new expansion of W(J, J̄ ;λ,N), different from the perturbative expansion, which is absolutely
convergent in some analyticity domain. This intermediate expansion is called the constructive expansion. We need
some notation.
Unrooted plane trees with oriented edges and marked vertices T �

n,ι . An unrooted plane tree is a tree with a cyclic
ordering (say clockwise) of the edges at every vertex. It is convenient to represent its vertices as fat vertices, and the
edges of the tree as ribbon edges connecting the fat vertices. We denote the total number of vertices of the tree by n.
They are labeled 1,2, . . . , n. The edges (i, j) of the tree are oriented either from i to j or from j to i. Plane trees
with marked vertices ι = {i1, . . . , ik} are obtained by selecting a preferred starting point of the cyclic ordering at the
vertices i1, . . . , ik . The starting point is represented as a mark on the fat vertex. An example is presented in Fig. 13.
We denote an unrooted plane tree with n vertices labeled 1,2, . . . , n, k marked vertices i1, . . . , ik and oriented edges
by T �

n,ι with ι = {i1, . . . , ik}. We denote the abstract tree associated to T �
n,ι by Tn. Note that several plane trees are

associated to the same abstract tree. Note also that a vertex can have at most one mark.
Being made of fat vertices and ribbon edges, plane trees are ribbon graphs with one face (the faces of ribbon graphs

are defined as the connected components of the boundary). If the tree has no marks, we denote Ξ [1 → 1] the ordered
list of vertices encountered when turning clockwise around the tree starting from the vertex 1. If the tree has marks,
we subdivide the face into strands starting and ending at the marks. We index the strands of T �

n,ι by their start and end
vertices id and iξ(d), turning clockwise. The tree in Fig. 13 has two strands: 14 and 41. As the strands are the boundary
of the plane tree, ξ is a cyclic permutation (each cycle of ξ corresponds to a connected component of T �

n,ι ). To every
strand id iξ(d) one associates the ordered lists of vertices, denoted Ξ [d → ξ(d)], encountered when turning clockwise
around the tree from the mark on id to the mark on iξ(d). For the example of Fig. 13, this lists are 1,2,3,2,4 for the
strand 14 and 4,2,1,5,6,5,1 for the strand 41.
Interpolated Gaussian measure. Let Tn be an abstract tree with n vertices labeled 1,2, . . . , n. We associate to every
edge of the tree (i, j) ∈ Tn a real variable uij . To every couple of vertices k and l we associate the function

wkk(Tn,u) = 1, wkl(Tn,u) = inf
(i,j)∈Pk→l (Tn)

uij , (79)

with Pk→l(Tn) the unique path in the tree Tn connecting k and l. Furthermore, to every vertex 1,2, . . . , n we associate
a N × N matrix σ (1), . . . , σ (n). We denote μwij (Tn,u)1⊗1(σ

(1), . . . , σ (n)) the Gaussian measure of covariance∫
dμwij (Tn,u)1⊗1

(
σ (1), . . . , σ (n)

)
σ

(k)
ab

(
σ (l)†)

dc

=
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)
σ

(k)
ab σ̄

(l)
cd = wkl(Tn,u)δacδbd . (80)

Resolvents. We define for every σ (i) the resolvent R(σ (i)) = [1 +
√

λ

ND−1 (σ (i) − σ (i)†)]−1. Note that the resolvent is
always well defined as σ (i) − σ (i)† is anti-hermitian.

We denote JJ † the N × N matrix (JJ †)n̄1n1 = ∑
�β Jn̄1 �β J̄n1 �β and ‖JJ †‖ its norm. We have the theorem
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Theorem 5 (Constructive expansion). With the notation above, the generating function of the cumulants of μ
(4)
N in

Eq. (78) is

W(J, J̄ ;λ,N) = ND−1
∑
n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
σ (j)

))]
, (81)

where, when k = 0, tr[∏k
d=1(JJ † ∏

j∈Ξ [ξd−1(1)→ξd (1)] R(σ (j)))] is replaced by tr[∏j∈Ξ [1→1] R(σ (j))].

The constructive expansion of Theorem 5 is the generalization to tensor models of the constructive Loop Vertex
Expansion (LVE) introduced in [31] for matrix models. Moreover we have

Theorem 6 (Absolute convergence). The series in Eq. (81) is absolutely convergent for λ ∈ R, 0 ≤ λ < 2−13−2 and
‖JJ †‖ < 3−1 (hence uniformly in N ).

Starting from the constructive expansion in Theorem 5 we prove the main result of this appendix.

Theorem 7 (Main constructive theorem). The perturbed Gaussian measure μ
(4)
N in Eq. (77) is trace invariant and

properly uniformly bounded for λ ∈ R, 0 ≤ λ < 2−13−2 with

lim
N→∞K

(
B(2),N

) = −1 + √
1 + 8λ

4λ
. (82)

We have thus given an explicit example of a properly uniformly bounded trace invariant probability distribution.
However, the relation between the constructive expansion of W(J, J̄ ;λ,N) and its perturbative expansion in Feyn-
man graphs is not yet established. Note that, for every finite N , the generating function of the moments of μ

(4)
N ,

Z(J, J̄ ;λ,N), is defined by an integral over ND complex variables which is absolutely convergent (and bounded by

e
ND−1 ∑

n̄1 �̄β,n1 �β J
n̄1 �̄β J̄

n1 �βδ
n̄1n1 δ �̄β �β ) for �λ ≥ 0 and divergent for �λ < 0. Thus Z(J, J̄ ;λ,N) is an analytic function in the

right half complex plane.
The perturbative treatment consists in two steps. To compute the cumulants one first takes the logarithm of

Z(J, J̄ ;λ,N) and second one expands this logarithm in Taylor series around the point λ = 0. Both steps are in
fact problematic. While one has a well controlled expression for Z(J, J̄ ;λ,N) as an absolutely convergent integral,
the same does not hold for W(J, J̄ ;λ,N). Furthermore, λ = 0 belongs to the boundary of the analyticity domain of
Z(J, J̄ ;λ,N). The number of terms (graphs) in the perturbative expansion of Z(J, J̄ ;λ,N) at order λn is (2n)! hence
(ignoring the scaling with N for an instant) the perturbative expansion of Z(J, J̄ ;λ,N) ∼ ∑

n≥0
1
n! (−λ)n(2n)! has

zero radius of convergence. This is not surprising as a Taylor expansion around a point belonging to the boundary of
the analyticity domain of some function typically leads to series which are not summable, but only Borel summable.

Theorem 8 (Nevanlinna–Sokal, [33]). A function f (λ,N) with λ ∈ C and N ∈ R+ is said to be Borel summable in
λ uniformly in N if

• f (λ,N) is analytic in a disk �( 1
λ
) > R−1 with R ∈R+ independent of N .

• f (λ,N) admits a Taylor expansion at the origin

f (λ,N) =
r−1∑
k=0

fN,kλ
k + RN,r(λ),

∣∣RN,r(λ)
∣∣ ≤ Kσrr!|λ|r , (83)

for some constants K and σ independent of N .
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If f (λ,N) is Borel summable in λ uniformly in N then B(t,N) = ∑∞
k=0

1
k!fN,kt

k is an analytic function for
|t | < σ−1 which admits an analytic continuation in the strip {z||�z| < σ−1} such that |B(t,N)| < Bet/R for some
constant B independent of N and f (λ,N) is represented by the absolutely convergent integral

f (λ,N) = 1

λ

∫ ∞

0
dtB(t,N)e−t/λ. (84)

That is the Taylor expansion of f (λ,N) at the origin is Borel summable, and f (λ,N) is its Borel sum. Note that
the set {λ|�(λ−1) > R−1} with R a positive real number (the set of complex λ such that the real part of the inverse
of λ is larger than 1/R), is a disk (which we call a Borel disk) in the complex plane centered at R

2 and of radius R
2

(hence tangent to the imaginary axis) as

�
(

1

λ

)
= �λ

|λ|2 = R/2 + �(λ − R/2)

(R/2 + �(λ − R/2))2 + (�(λ − R/2))2
>

1

R
⇔ R2

4
>

∣∣∣∣λ − R

2

∣∣∣∣2. (85)

In order to conclude that W(J, J̄ ;λ,N) is the Borel sum of the series of connected Feynman graphs (i.e. it is the
Borel sum of its Taylor expansion around λ = 0) we prove that

Theorem 9 (Borel summability). The function N−DW(J, J̄ ;λ,N) is Borel summable in λ uniformly in N for ‖JJ †‖
small enough.11

A crucial point is that, as we are interested in the N → ∞ limit, both the convergence of the constructive expansion
in its analyticity domain and the Borel summability around λ = 0 are uniform in N . The constructive expansion
captures some features of the perturbative expansion (for instance the perturbative bounds on Feynman graphs can be
promoted to bounds on the terms in the constructive expansion) but unlike the former it is absolutely convergent. The
draw back of the constructive expansion is that it is rather involved. Note that a priori one can give several constructive
expansions of the same measure. The LVE has so far proven the only constructive expansion adapted to matrix and
tensor models.

A.1. The perturbative theorem

As already mentioned, we first evaluate the moments and cumulants of the measure (70) by expanding in Taylor series
with respect to tH. The joint moments of the probability distribution of tensor entries

μN(T�n1 , T̄�̄n1
, . . . , T̄�̄nk

) =
∫

dμNT�n1 T̄�̄n1
· · · T̄�̄nk

, (86)

are expressed as sums over Feynman graphs. They are obtained as follows: upon expanding with respect to tH one
obtains a sum of Gaussian integrals

μN(T�n1 , T̄�̄n1
, . . . , T̄�̄nk

)

=
∑

nH≥0

(∏
H

1

nH! (−tH)nH

)
1

Z(tH,N)

×
∫ (∏

�n
ND−1 dT�n dT̄�n

2πı

)
e−∑

�n T�nδ�n�̄nT̄�̄n T�n1 T̄�̄n1
· · · T̄�̄nk︸ ︷︷ ︸

external insertions

(∏
H

(
TrH(T, T̄)

)nH)
︸ ︷︷ ︸

effective vertices

. (87)

11The proof is easily adapted to yield Borel summability for all ‖JJ †‖ with some radius R(‖JJ †‖) such that R(‖JJ †‖) > R > 0 for ‖JJ †‖ small
enough.
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The arguments of the moment are sometimes called external insertions. The Gaussian integral is evaluated in
terms of contractions (pairings) of tensor entries. For each such contraction scheme one draws a Feynman graph.
The invariants TrH(T, T̄) (represented by a graph H with D colors 1,2, . . . ,D) act as effective vertices (interactions)
of the Feynman graphs (not to be confused with the black and white vertices of H itself which represent the tensor
entries T and T̄). The effective interactions are supplemented by effective edges (propagators, Wick contractions),
representing the pairing of two tensors T�n and T̄ �̄n with the Gaussian measure. We represent the contraction of two
tensors as a dashed edges of color 0 connecting the corresponding black and white vertices. Thus a Feynman graph G
has D + 1 colors, 0 for the dashed edges and 1, . . . ,D for the effective interactions.

The external insertions T�n1 , T̄�̄n1
, . . . , T̄�̄nk

in the joint moment are represented as external black or white vertices
of valence 1. The external vertices are joined by edges of color 0 to the rest of the Feynman graph. Thus the dashed
edges of color 0 fall into two categories: internal joining two tensors (that is black and white vertices) on two effective
interactions H and H′ and external joining an external vertex with an internal vertex on some H. The Feynman graphs
are then nothing but the open D + 1 colored graphs of Definition 9. Two examples of Feynman graphs are presented
on the left in Fig. 8. The effective interactions H are represented with solid edges of colors 1, 2 and 3. Both graphs
have four external edges of color 0.

The cumulants κ2k(T�n1 , T̄�n1 , . . . , T̄�̄nk
) are sums over connected Feynman graphs G with 2k external (univalent)

vertices see [30]. We stress that the G’s contributing to a cumulant are connected as a graph with D + 1 colors.
Each D + 1 colored graph represents an abstract D dimensional simplicial pseudo-manifold [21]. This pseudo-

manifold is obtained by associating a D-simplex to each (black and white) vertex in the graph (hence to each tensor
entry T and T̄). The D − 1 simplices bounding the D simplex are colored 0, 1 up to D. This induces colorings on
all lower dimensional simplices: the D − k simplex shared by the D − 1 simplices of colors i1, i2, . . . , ik will be
colored by the k-uple of colors (i1, i2, . . . , ik). The D simplices are then glued respecting all the colorings: an edge
in the graph represents the unique gluing of two D simplices along boundary D − 1 simplices which respects all
the colorings of the D − 1, D − 2 etc. simplices.12 An effective operator TrH(T, T̄) with 2k tensors represents the
gluing of 2k D-simplices around a vertex forming a “chunk.” For example in three dimensions an operator represents
a gluing of tetrahedra around a vertex. The boundary of such a chunk is paved by triangles (represented by the half
edges of color 0). The chunks are cones over their boundary, hence they can have non-trivial topology. A Feynman
graph represents the gluing of such chunks into a pseudo-manifold. As the combinatorial weights and amplitudes of
the graphs are fixed by the Feynman rules, the measures (70) encode a canonical theory of random pseudo-manifolds
in arbitrary dimensions. The leading order melonic graphs represent spheres.

Each contraction in the Gaussian integral (hence dashed edge of color 0) replaces the two tensors T�n and T̄�̄n by a
covariance 1

ND−1 δ�n�̄n. The contribution of a Feynman graph G to a cumulant is then

(∏
H

1

nH(G)! (−tH)nH(G)

)∑
n,n̄

( ∏
H(G)

ND−1δ
H(G)
nn̄

)( ∏
l0=(v,v̄)∈E0(G)

1

ND−1

D∏
i=1

δni
vn̄i

v̄

)

=
(∏

H

1

nH(G)! (−tH)nH(G)

)
N(D−1)H(G)−(D−1)E0(G)

×
∑
n,n̄

( ∏
H(G)

∏
li=(v,v̄)∈E i (H(G))

δni
v n̄i

v̄

)( ∏
l0=(v,v̄)∈E0(G)

D∏
i=1

δni
vn̄i

v̄

)
, (88)

where the product over H runs over all the connected graphs with colors 1, . . . ,D, H(G) runs over all the subgraphs
with colors 1, . . . ,D of G, nH(G) denotes the number of times the graph H appears as a subgraph of G, H(G) =
|H(G)| denotes the total number of subgraphs with colors 1, . . . ,D of G, and E0(G) = |E0(G)| the number of edges
of color 0 of G. The Kronecker δs compose along the faces with colors 0i. The faces with colors 0i of G are either
internal or external (see Section 4.2). The internal faces F (0,i)

int (G) (with F 0i
int(G) = |F (0,i)

int (G)|) yield a free sum hence

bring a factor N . The external faces f ∈ F (0,i)
ext necessarily start and end on two external vertices u and ū corresponding

12Hence the D − k simplices are one to one with the k-bubbles, i.e. subgraphs with k colors, of the graph.
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to two arguments T and T̄ in the joint moment, f = (u, ū). Thus the contribution of a graph becomes(∏
H

1

nH(G)! (−tH)nH(G)

)
N(D−1)H(G)−(D−1)E0(G)+∑

i F 0i
int(G)

∏
f =(u,ū)∈⋃i F0i

ext(G)

δni
un̄i

ū
, (89)

and the operator
∏

f =(u,ū)∈⋃i F0i
ext(G) δni

un̄i
ū

reproduces the trace invariant operator associated to the boundary graph
∂G (see again Section 4.2).

As already mentioned (the second example in Fig. 8) in spite of the fact that G itself is connected, the boundary
graph ∂G can be disconnected. It follows that a cumulant, which is a sum over connected graphs G expands as a sum
over all possible D colored graphs (connected or not) corresponding to the possible boundary graphs B = ∂G

κ(T�n1 , T̄�n1 , . . . , T̄�̄nk
) =

∑
B=⋃C(B)

ρ=1 Bρ

[ ∑
G,∂G=B

(
Q(G)∏
H nH(G)!

)(∏
H

(−tH)nH(G)

)

× N(D−1)H(G)−(D−1)|E0(G)|+∑
i F 0i

int(G)

]C(B)∏
ρ=1

δ
Bρ

nn̄ , (90)

leading to Eq. (73) and Eq. (74). We denoted Q(G) the number of contraction schemes (pairings) leading to the

same graph G. In the physics literature the combinatorial prefactor
∏

H nH(G)!
Q(G)

, is called the “symmetry factor” of G.

It respects
∏

H nH(G)!
Q(G)

= |Aut(G)|∏
H |Aut(H)|nH(G) where |Aut(H)| (respectively |Aut(G)|) denotes the order of the group of

automorphisms of the graph H (respectively G).
We can now describe the precise relationship between the Feynman graphs and the doubled graphs used to establish

Theorem 2. The doubled graphs for a perturbed Gaussian measure consist of the observable B and the boundary graphs
Bρ(α), ρ = 1, . . . ,C(B(α)) of the various Feynman graphs G(α) contributing to each of the cumulants κ2k(α) arising
in an expansion in cumulants of the moment μN(TrB(T, T̄)).

A.1.1. Proof of Theorem 4
We will show that for every connected D + 1 colored graph G with 2k external vertices, E0(G) edges of color 0,
F 0i

int(G) internal faces of colors 0i, H(G) subgraphs with colors 1, . . . ,D and C(∂G) connected components of the
boundary graph ∂G

(D − 1)H(G) − (D − 1)E0(G) +
∑

i

F 0i
int(G) ≤ −2(D − 1)k(∂G) + D − C(∂G). (91)

We divide the proof in two parts. We first present an iterative algorithm which reduces the graph G to the D + 1
colored graph ∂G ∪ E0

ext(G) consisting in the D colored graph ∂G decorated by an external edge of color 0 for each
of its 2k vertices. At each step of this algorithm we will obtain a graph G(s) interpolating between G(0) = G and
G(smax) = ∂G ∪ E0

ext(G). Second we will prove that at each step of this algorithm the quantity

Q(s) = D − C
(
G(s)

)+ (D − 1)
[
H

(
G(s)

)− C
(
G(s)

)]− (D − 1)E0(G(s)
)+

∑
i

F 0i
int

(
G(s)

)
, (92)

is strictly increasing, where we denoted C(G(s)) the number of connected components of G(s), H(G(s)) the number of
bubbles (subgraphs) with colors 1, 2 up to D of G(s), E0(G(s)) the number of edges of color 0 of G(s) and F 0i

int(G(s)) the
number of internal faces of colors 0i of G(s). As Q(0) = (D − 1)H(G)− (D − 1)E0(G)+∑

i F
0i
int(G) and Q(smax) =

D − C(∂G) − 2(D − 1)k(∂G), we conclude.

Obtaining ∂G ∪ E0
ext(G). The algorithm we present here has been introduced in [4].

Consider a connected D + 1 colored graph G(s) with 2k external vertices. We first define an internal q + 1 dipole
with colors 0, i1, . . . , iq as two internal vertices v and v̄ of G(s) connected by an internal edge of color 0, l0 = (v, v̄)
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Fig. 14. A q + 1 dipole with colors 0,1, . . . , q .

Fig. 15. The reduction of all the internal dipoles in a graph.

and exactly q edges of colors i1, . . . , iq , li1 = (v, v̄), li2 = (v, v̄), . . . , liq = (v, v̄) . An example of an internal q + 1
dipole with colors 0,1, . . . , q is given on the left in Fig. 14. An internal q +1 dipole can be contracted. The contraction
consist in deleting the two vertices v and v̄ and the q +1 edges connecting them, and reconnecting the remaining edges
respecting the colors.

Under a contraction we obtain a new graph G(s+1) having two fewer vertices, one fewer internal edge of color 0, q

fewer internal faces of colors 0i and the same number of external vertices, 2k. Indeed all the q internal faces of colors
0i1,0i2, . . . ,0iq formed by the lines {l0, li1}, {l0, li2}, up to {l0, liq } are deleted. All the other internal (resp. external)
faces of colors 0j , for j �= i1, . . . , iq are circuits (resp. chains) of edges with alternating colors of length at least four
(resp. five, as the external edges are of color 0). Under the contraction their length decreases by two: the dipole line
l0 and a line of color j , hence they become circuits (resp. chains) of edges with alternating colors 0 and j of length at
least two (resp. three). They are thus internal (resp. external) faces in the new graph G(s+1). Note that the new graph,
G(s+1), can potentially be disconnected. Note also that neither the external vertices of G(s), nor its internal vertices
hooked by an edge of color 0 to external vertices can be deleted.

Consider the graph obtained starting from G and contracting iteratively, in an arbitrary order, the maximal number
of internal q + 1 dipoles with colors 0, i1, . . . , iq . The number of internal dipoles contracted equals the number of
internal edges of color 0 of G, E0

int(G) = |E0
int(G)|. We show below that the final graph G(smax) is ∂G ∪ E0

ext(G), the
boundary graph of G decorated by an external edge of color 0 on each of its vertices. Examples of this full reduction
are given in Fig. 15.

The final graph G(smax) has 4k vertices, 2k coinciding with the external vertices of G and 2k with the internal
vertices of G hooked to external vertices by external edges of color 0. It has no more internal edges of color 0 but still
has 2k external edges of color 0. As the internal vertices are each touched by exactly one edge for every color 1, 2 up
to D, G(smax) has exactly k edges of every color 1, 2 up to D. Furthermore G(smax) has no internal faces of colors 0i.
However the external faces with colors 0i can never be deleted by this procedure hence all the faces of colors 0i of
G(smax) are external and they are one to one to the Dk external faces of colors 0i of G. It follows that all (external) faces
0i of G(smax) contain exactly one edge of color i, connecting the two internal vertices hooked to the external vertices
which share the face 0i. The edges of color 0 of G(smax) are all external edges and one to one to the external edges of
G, E0(G(smax)) = E0

ext(G). By deleting the edges of color 0 (and flipping the black and white vertices), the final graph
G(smax) \ E0(G(smax)) will have a vertex for every external point of G, and an edge of color i connecting two vertices u

and ū for every external face f = (u, ū) of colors 0i of G. Hence G(smax) \ E0(G(smax)) = ∂G.
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Bounds. Suppose we reduce a dipole of colors 0,1, . . . , q to pass from G(s) to G(s+1). We have two cases. Either the
two vertices v and v̄ belong to two different bubbles (connected components) with colors 1, 2 up to D and the dipole
is necessarily a 1 dipole made exclusively by an edge of color 0, or the two vertices belong to the same bubble with
colors 1, 2 up to D.
First case. We have v ∈ H1 and v̄ ∈ H2, and both H1 and H2 belong to the same connected component of G(s).
The number of connected components does not change by contracting the dipole, C(G(s+1)) = C(G(s)). To see this,
consider the bubble H1. As it is a graph with D colors it cannot become disconnected by deleting v. Chose a spanning
tree T1 in H1 \ v (the bubble with v omitted), and a spanning tree T2 in H2 \ v̄. Complete it by adding the edges
of color 1 touching v ∈ l1

v and v̄ ∈ l1
v̄ and the edge of color, l0

vv̄ = (v, v̄), and finally to a spanning tree in the entire
connected component of G(s) by adding edges Trest. The spanning tree T1 ∪ l1

v ∪ l0
vv̄ ∪ l1

v̄ ∪ T2 ∪ Trest becomes after
reduction the tree T1 ∪ l1 ∪ T2 ∪ Trest (with l1 the new edge of color 1), spanning one connected component in G(s+1).

The two bubbles H1,H2 ⊂ G(s) are collapsed into a unique bubble of G(s+1) thus H(G(s+1)) = H(G(s)) − 1. The
number of edges of color 0 decreases by 1, E0(G(s+1)) = E0(G(s)) − 1, and the number of internal faces of color 0i

does not change F 0i
int(G(s+1)) = F 0i

int(G(s+1)) hence

D − C
(
G(s+1)

)+ (D − 1)
[
H

(
G(s+1)

)− C
(
G(s+1)

)]− (D − 1)E0(G(s+1)
)+

∑
i

F 0i
int

(
G(s+1)

)
= D − C

(
G(s)

)+ (D − 1)
[
H

(
G(s)

)− C
(
G(s)

)]− (D − 1)E0(G(s)
)+

∑
i

F 0i
int

(
G(s)

)
. (93)

Second case. Both v and v̄ belong to the same bubble v, v̄ ∈ H. In this case the number of connected components of
G(s) can increase when contracting the q + 1-dipole (note that, like in the previous case q can be zero, but it can also
be larger than 0 in this case). As each of the new D − q edges (one for each color not belonging to the q + 1 dipole)
must belong to some connected component of G(s+1), we have C(G(s+1)) − C(G(s)) ≤ D − q − 1. Moreover, if one
of these edges belongs to a connected component created by the contraction, then it certainly belongs to a new bubble
of colors 1, 2 up to D created by this contraction. Hence C(G(s+1)) − C(G(s)) ≤ H(G(s+1)) − H(G(s)). As before,
|E0(G(s+1))| = |E0(G(s))|−1, but q internal faces of colors 0i are deleted,

∑
i F

0i
int(G(s+1)) = ∑

i F
0i
int(G(s))−q , hence

D − C
(
G(s+1)

)+ (D − 1)
[
H

(
G(s+1)

)− C
(
G(s+1)

)]− (D − 1)E0(G(s+1)
)+

∑
i

F 0i
int

(
G(s+1)

)
≥ D − C

(
G(s)

)− (D − q − 1)

+ (D − 1)
[
H

(
G(s)

)− C
(
G(s)

)]
− (D − 1)E0(G(s)

)+ D − 1 +
∑

i

F 0i
int

(
G(s)

)− q, (94)

thus in both cases Q(s + 1) ≥ Q(s).

A.2. The constructive theorems

In order to prove that the full resummed cumulant is properly uniformly bounded one must perform a good deal of
extra work. Before proceeding to the core of this section we first establish a technical lemma.

Lemma 8. Let σ and τ and ξ be three permutations of k elements. We denote c(τ ) the number of cycles of the
permutation τ . Then

c(ξ) + c(σξ) + c(τ ) + c
(
στ−1) ≤ 2c(ξ) + 2k. (95)

Proof. To the triple of permutations ξ , σ and τ we associate a ribbon graph constructed as follows.
Consider the decomposition of ξ in cycles, ξ = C1, . . . ,Cc(ξ), each of length |Cr |. We draw a fat vertex for every

cycle of ξ having 4|Cr | halfedges. We assign a label lqαqβqjq, lξ(q)αξ(q)βξ(q)jξ(q), . . . turning clockwise, to each



Universality for random tensors 1509

Fig. 16. Ribbon graph associated to three permutations ξ , σ and τ .

halfedge, see Fig. 16. Two consecutive halfedges share a strand. The strands are of three kinds: solid (connecting jq to
lξ(q)), dashed (connecting αq with βq ) and wiggly (connecting lq to αq or βq to jq ). Thus the halfedges representing
l’s and j ’s are solid -wiggly, and the ones representing α’s and β’s are wiggly-dashed. We represent the permutations
σ and τ by ribbon edges connecting the halfedges lq to jσ(q) and αq with βτ(q). The ribbon edges lq → jσ(q) are then
solid-wiggly and the ribbon edges αq → βτ(q) are wiggly-dashed.

The faces (closed strands) of the ribbon graph thus obtained are of three types:

• Dashed faces βq → αq → βτ(q) . . . . We call them “τ faces” as they are indexed by the permutation τ . Their number
is the number of cycles c(τ ).

• Solid faces jq → lξ(q) → jσξ(q) . . . . We call them “σξ” as they are indexed by the permutation σξ . Their number
is the number of cycles c(σξ).

• Wiggly faces βq → ατ−1(q) → lτ−1(q) → jστ−1(q) . . . . We call them “στ−1” faces as they are indexed by the per-
mutation στ−1. Their number is the number of cycles c(στ−1).

The ribbon graph has c(ξ) vertices and 2k edges. Note that the ribbon graph might be disconnected. We denote the
number of its connected components C(ξ,σ, τ ). Then

c(ξ) − 2k + c(σξ) + c(τ ) + c
(
στ−1) ≤ 2C(ξ,σ, τ ) ≤ 2c(ξ) (96)

as every connected component must have at least a vertex, hence C(ξ,σ, τ ) ≤ c(ξ). �

A.2.1. Proof of the constructive expansion Theorem 5
The Loop Vertex Expansion of W(J, J̄ ;λ,N) in Eq. (81) is obtained by combining three ingredients: the Hubbard
Stratonovich intermediate field representation, the universal Brydges–Kennedy–Abdesselam–Rivasseau forest for-
mula and a replica trick. The last two ingredients are a recurrent feature of any constructive expansion while the first
one is specific to the LVE. From now on we drop the bar over the indices of T̄.
Step 1: We use the Hubbard Stratonovich intermediate field representation of the interaction term. This representation
relies on the remark that for any complex numbers Z1 and Z2, e−Z1Z2 can be represented as a Gaussian integral

∫
dz̄ dz

2ıπ
e−zz̄−zZ1+z̄Z2

z=x+ıy

z̄=x−ıy=====
∫

dx dy

π
e−x2−y2−x(Z1−Z2)−ıy(Z1+Z2) = e

(Z1−Z2)2

4 − (Z1+Z2)2

4 = e−Z1Z2 . (97)

It follows that the quartic perturbation can be represented using N × N integration variables σab as

e−ND−1λ
∑

n1,m1,�α �β T
n1α

T̄
m1 �αTm1 �β T̄n1 �β

= e−ND−1λ
∑

n1,m1 (
∑

�α Tn1α
T̄

m1 �α)(
∑

�β T
m1 �β T̄n1 �β )

=
∫ (∏

ab

dσab dσ̄ab

2πı

)
e−∑

ab σabσ̄ab−
√

λN((D−1)/2)
∑

b,a, �β T
b �β T̄a �βσab+

√
λN((D−1)/2)

∑
a,b,�α Ta�αT̄b�ασ̄ab . (98)
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The new integration variables σab form a N × N matrix, known as an intermediate (matrix) field. Denoting I the
identity matrix of size ND−1 × ND−1 we write more compactly

e−ND−1λ
∑

n1,m1,�α �β T
n1α

T̄
m1 �αTm1 �β T̄n1 �β

=
∫ (∏

ab

dσab dσ̄ab

2πı

)
e−∑

a,b σabσ̄ab−ND−1 ∑
n1,m1,�α �β T̄

n1 �β(
√

λ/ND−1σ⊗I−
√

λ/ND−1σ †⊗I)
n1 �β;m1 �αTm1 �α , (99)

thus Z(J, J̄ ;λ,N) becomes, denoting 1 the identity matrix of size N × N ,

Z(J, J̄ ;λ,N)

=
∫ (∏

n�α
ND−1 dT�n dT̄�n

2πı

)(∏
ab

dσab dσ̄ab

2πı

)
e−∑

ab σabσ̄ab

× e−ND−1 ∑
n1,m1,�α, �β T̄

n1 �β (1⊗I+
√

λ/ND−1(σ−σ †)⊗I)
n1 �β;m1 �αTm1 �α+ND−1 ∑

n1, �β T̄
n1 �βJ

n1 �β+ND−1 ∑
n1, �β T

n1 �β J̄
n1 �β . (100)

As σ − σ † is anti hermitian the resolvent R(σ) = [1 +
√

λ

ND−1 (σ − σ †)]−1 is well defined and respects

∂

∂σab

R(σ )cd = −
√

λ

ND−1
R(σ)caR(σ )bd ,

∂

∂σ
†
ba

R(σ )cd =
√

λ

ND−1
R(σ)cbR(σ )ad,

∂

∂σab

tr ln
(
R(σ)

) = −
√

λ

ND−1
Rba,

∂

∂σ
†
ba

tr ln
(
R(σ)

) =
√

λ

ND−1
Rab, (101)

∥∥R(σ)
∥∥ ≤ 1 ∀λ ∈R+,

where ‖R(σ)‖ denotes the operator norm. The introduction of the intermediate field renders the integration over TT̄
Gaussian, thus

Z(J, J̄ ;λ,N) =
∫ (∏

ab

dσab dσ̄ab

2πı

)
e− trσσ †+Tr ln(R(σ )⊗I)+ND−1 ∑

n1,m1, �β,�α J̄
n1 �β (R(σ )⊗I)

n1 �β;m1 �αJ
m1 �α

=
∫ (∏

ab

dσab dσ̄ab

2πı

)
e− trσσ †+ND−1 tr ln(R(σ ))+ND−1 tr(R(σ )JJ †), (102)

where tr denotes the trace over an index of size N , Tr denotes a trace over an index of size ND , and (JJ †)mn ≡∑
�α Jm�αJ̄n�α is a N × N hermitian matrix of external sources. Note that J and J † are independent.

Step 2: The second ingredient consists in evaluating the integral over σ by a replica trick. Let X be a complex vector
of components X1, . . . ,XN . We want to compute an integral with normalized Gaussian measure of covariance C

(denoted dμC(X)) of some perturbation V (X, X̄). We expand in V (of course all this is justified only provided that
the final expression is absolutely convergent) to get

I =
∫

dμC(X)eV (X̄,X) =
∫

dμC(X)
∑
n≥0

1

n!V (X̄,X)n. (103)

The term of degree n can be rewritten as a Gaussian integral over n replicas X(1), . . . ,X(n) with degenerate covariance
between replicas C

(i,j)

ab̄
= Cab̄ , hence

I =
∑
n≥0

1

n!
∫

dμ
C

(i,j)

ab̄

(
X(1), . . . ,X(n)

) n∏
i=1

V
(
X̄(i),X(i)

)
. (104)

We will regard each term in this expansion as a function of parameters ij = xji , evaluated for all xij = 1, correspond-
ing to a Gaussian measure with covariance C

(i,i)

ab̄
= Cab̄,C

(i,j)

ab̄
= xijCab̄i �= j .
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Step 3: The third ingredient is the universal Brydges–Kennedy–Abdesselam–Rivasseau forest formula [1]. Consider
n sites labeled 1,2, . . . , n and a function f depending on n(n−1)

2 link variables xij with i �= j . Then

f (1, . . . ,1) =
∑
Fn

∫ 1

0

( ∏
(i,j)∈Fn

duij

)(
∂ |E(Fn)|f∏
(i,j)∈Fn

∂xij

)∣∣∣∣
xkl=wkl(Fn,u)

,

wkl(Fn,u) = inf
(i,j)∈Pk→l (Fn)

uij , (105)

where Fn runs over all the forests (i.e. graphs with no loops or undirected acyclic graphs) with vertices labeled
1,2, . . . , n built over the n sites, |E(Fn)| denotes the number of edges in the forest Fn, Pk→l (Fn) is the unique path
in the forest Fn joining the vertices k and l, and the infimum is set to zero if there is no such path (i.e. k and l belong
to different trees in the forest).

We compute

∂ |E(Fn)|∏
(i,j)∈Fn

∂xij

[∫
dμxij Cab̄

(
X(1), . . . ,X(n)

) n∏
i=1

V
(
X̄(i),X(i)

)]

= ∂ |E(Fn)|∏
(i,j)∈Fn

∂xij

[
e
∑

a,b,i (∂/∂X
(i)
a )Cab̄(∂/∂X̄

(i)

b̄
)+∑

a,b,i �=j xij (∂/∂X
(i)
a )Cab̄(∂/∂X̄

(j)

b̄
)

n∏
i=1

V
(
X̄(i),X(i)

)]∣∣∣∣∣
X(i)=X̄(i)=0

= e
∑

a,b,i (∂/∂X
(i)
a )Cab̄(∂/∂X̄

(i)

b̄
)+∑

a,b,i �=j xij (∂/∂X
(i)
a )Cab̄(∂/∂X̄

(j)

b̄
)

×
[ ∏

(i,j)∈Fn

(∑
ab̄

∂

∂X
(i)
a

Cab̄

∂

∂X̄
(j)

b̄

+
∑
ab̄

∂

∂X
(j)
a

Cab̄

∂

∂X̄
(i)

b̄

)] n∏
i=1

V
(
X̄(i),X(i)

)∣∣∣∣∣
X(i),X̄(i)=0

=
∫

dμxij Cab̄

(
X(1), . . . ,X(n)

)
×

[ ∏
(i,j)∈Fn

(∑
ab̄

∂

∂X
(i)
a

Cab̄

∂

∂X̄
(j)

b̄

+
∑
ab̄

∂

∂X
(j)
a

Cab̄

∂

∂X̄
(i)

b̄

)] n∏
i=1

V
(
X̄(i),X(i)

)
, (106)

where we take into account that xij = xji . Thus the forest formula applied to the replicated integral yields

I =
∑
n≥0

1

n!
∑
Fn

∫ 1

0

( ∏
(i,j)∈F

duij

)∫
dμwij (Fn,u)Cab̄

(
X(1), . . . ,X(n)

)

×
[ ∏

(i,j)∈Fn

(∑
ab̄

∂

∂X
(i)
a

Cab̄

∂

∂X̄
(j)

b̄

+
∑
ab̄

∂

∂X
(j)
a

Cab̄

∂

∂X̄
(i)

b̄

)] n∏
i=1

V
(
X̄(i),X(i)

)
, (107)

with wii(Fn,u) = 1 and wij (Fn,u) = inf(k,l)∈Pi→j (Fn) u
kl . Thus in our case we get (taking into account that the

measure over σ is 1 ⊗ 1)

Z(J, J̄ ;λ,N) =
∑
n≥0

1

n!
∑
Fn

∫ 1

0

( ∏
(i,j)∈Fn

duij

)∫
dμwij (Fn,u)1⊗1

(
σ (1), . . . , σ (n)

)
×

[ ∏
(i,j)∈Fn

(∑
ab

∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

+
∑
ab

∂

∂σ
(j)
ab

∂

∂σ
(i)†
ba

)]

×
n∏

i=1

{
ND−1 tr ln

[
R
(
σ (i)

)]+ ND−1 tr
[
R
(
σ (i)

)
JJ †]}. (108)



1512 R. Gurau

One of the most important features of the Brydges–Kennedy–Abdesselam–Rivasseau formula is that interpolated
covariance matrix wij (Fn,u)1 ⊗ 1 is positive [1]. Thus the Gaussian measure is well defined and the expectation of
any function of σ (1), . . . , σ (n) is bounded by its supremum.

Note that the Gaussian integral factors over the connected components of the forests (i.e. trees). The main advantage
of Eq. (108) is that it allows to compute W(J, J̄ ;λ,N) very easily: whenever a function is a sum over forests of
contributions which factor over the trees, its logarithm is the sum over trees of the tree contribution, hence

W(J, J̄ ;λ,N)

=
∑
n≥1

N(D−1)n

n!
∑
Tn

∫ 1

0

( ∏
(i,j)∈Tn

duij

)∫
dμwij (Tn,u)1⊗1

(
σ (1), . . . , σ (n)

)

×
[ ∏

(i,j)∈Tn

(∑
ab

∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

+
∑
ab

∂

∂σ
(j)
ab

∂

∂σ
(i)†
ba

)] n∏
i=1

{
tr ln

[
R
(
σ (i)

)]+ tr
[
R
(
σ (i)

)
JJ †]}, (109)

where Tn runs over all trees with vertices labeled 1,2, . . . , n and

wii(Tn,u) = 1, wij (Tn,u) = inf
(k,l)∈Pi→j (Tn)

ukl, (110)

with Pi→j (Tn) the path in the tree Tn connecting i and j . Expanding the product, we get

W(J, J̄ ;λ,N) =
∑
n≥1

1

n!N
(D−1)n

∑
Tn

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)[ ∏
(i,j)∈Tn

(∑
ab

∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

+
∑
ab

∂

∂σ
(j)
ab

∂

∂σ
(i)†
ba

)]

×
n∑

k=0

n∑
i1<i2<···<ik

tr
[
R
(
σ (i1)

)
JJ †] · · · tr

[
R
(
σ (ik)

)
JJ †] n∏

i=1
i �=i1,...,ik

tr ln
[
R
(
σ (i)

)]

=
∑
n≥1

1

n!N
(D−1)n

∑
Tn

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)[ ∏
(i,j)∈Tn

(∑
ab

∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

+
∑
ab

∂

∂σ
(j)
ab

∂

∂σ
(i)†
ba

)]

×
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

tr
[
R
(
σ (i1)

)
JJ †] · · · tr

[
R
(
σ (ik)

)
JJ †] n∏

i=1
i �=i1,...,ik

tr ln
[
R
(
σ (i)

)]
. (111)

We represent every vertex of Tn corresponding to a tr ln[R(σ (i))] as a fat vertex, and every vertex corresponding to a
term [R(σ (ir ))JJ †] as a fat vertex with a mark. The mark represents the sources JJ †. The vertices are labeled by the
index i of the corresponding replicated field σ (i). Each derivative with σ and σ † brings a resolvent (of the appropriate
replica). The resolvents are contracted along the edges of the tree which, as the field σ has two indices, are double
(ribbon) edges∑

ab

tr

[
∂R(σ (i))

∂σ
(i)
ab

∏
l∈Ξ1

R
(
σ (l)

)]
tr

[
∂R(σ (j))

∂σ
(j)†
ba

(∏
l∈Ξ2

R
(
σ (l)

))]

=
∑
ab

[
R
(
σ (i)

) ∏
l∈Ξ1

R
(
σ (l)

)
R
(
σ (i)

)]
ba

[
R
(
σ (j)

) ∏
l∈Ξ2

R
(
σ (l)

)
R
(
σ (j)

)]
ab
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= tr

[
R
(
σ (i)

) ∏
l∈Ξ1

R
(
σ (l)

)
R
(
σ (i)

)
R
(
σ (j)

) ∏
l∈Ξ2

R
(
σ (l)

)
R
(
σ (j)

)]
. (112)

The edges are oriented, say from σ to σ †. The contribution of a tree can be computed by adding the tree edges one by
one starting from a graph that has only the fat vertices. Each fat vertex has a face (its boundary). When adding a tree
edge, the derivatives with σab and σ

†
ba and the sums over a and b merge the two faces into a new face bounding the

graph in which the two vertices are connected by a ribbon line.
If the vertex i in the graph has valence di , the resolvent R(σ (i)) is derived di times. The successive derivation of

a resolvent yields an extra summation on the way of ordering the branches of the tree. Hence for each Tn we obtain
a sum over the various unrooted labeled plane trees T �

n,ι with oriented edges and n vertices, out of which k (having
labels ι = {i1, . . . , ik}) are marked, compatible with Tn.

Consider for instance the terms generated by

( ∑
a12b12

∂

∂σ
(1)
a12b12

∂

∂σ
(2)†
b12a12

)( ∑
a23b23

∂

∂σ
(2)
a23b23

∂

∂σ
(3)†
b23a23

)( ∑
a24b24

∂

∂σ
(2)
a24b24

∂

∂σ
(4)†
b24a24

)

×
( ∑

a15b15

∂

∂σ
(1)
a15b15

∂

∂σ
(5)†
b15a15

)( ∑
a56b56

∂

∂σ
(5)
a56b56

∂

∂σ
(6)†
b56a56

)
tr
[
R
(
σ (1)

)
JJ †] tr

[
R
(
σ (4)

)
JJ †]

× tr ln
[
R
(
σ (2)

)]
tr ln

[
R
(
σ (3)

)]
tr ln

[
R
(
σ (5)

)]
tr ln

[
R
(
σ (6)

)]
. (113)

They correspond to a tree with lines (12), (23), (24), (15), (56). Up to a global factor the derivatives are

∑
a12b12a23b23a24b24

a15b15a56b56

[
R
(
σ (1)

)
b15a12

[
R
(
σ (1)

)
JJ †R

(
σ (1)

)]
b12a15

+ [
R
(
σ (1)

)
JJ †R

(
σ (1)

)]
b15a12

R
(
σ (1)

)
b12a15

]

× [
R
(
σ (4)

)
JJ †R

(
σ (4)

)]
a24b24

× (
R
(
σ (2)

)
a12a23

R
(
σ (2)

)
b23a24

R
(
σ (2)

)
b24b12

+ R
(
σ (2)

)
a12a24

R
(
σ (2)

)
b24a23

R
(
σ (2)

)
b23b12

)
× R

(
σ (3)

)
a23b23

(
R
(
σ (5)

)
a15a56

R
(
σ (5)

)
b56b15

)
R
(
σ (6)

)
a56b56

. (114)

The term∑([
R
(
σ (1)

)
JJ †R

(
σ (1)

)]
b15a12

R
(
σ (1)

)
b12a15

)[
R
(
σ (4)

)
JJ †R

(
σ (4)

)]
a24b24

× (
R
(
σ (2)

)
a12a23

R
(
σ (2)

)
b23a24

R
(
σ (2)

)
b24b12

)
R
(
σ (3)

)
a23b23

(
R
(
σ (5)

)
a15a56

× R
(
σ (5)

)
b56b15

)
R
(
σ (6)

)
a56b56

, (115)

corresponds to the plane tree represented in Fig. 17. The other three terms correspond to other plane trees (obtained
by permuting either the edges (12) and (15) on the vertex 1, or the edges (23) and 24 on the vertex 2).

A moment’s reflection reveals that the contribution of each plane tree is proportional to the ordered product of
resolvents associated to the vertices along the strands and JJ † factors for the marks: for the example in Fig. 17 it
reads

tr
[
R
(
σ (1)

)
JJ †R

(
σ (1)

)
R
(
σ (2)

)
R
(
σ (3)

)
R
(
σ (2)

)
R
(
σ (4)

)
JJ †R

(
σ (4)

)
R
(
σ (2)

)
× R

(
σ (1)

)
R
(
σ (5)

)
R
(
σ (6)

)
R
(
σ (5)

)]
. (116)
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Fig. 17. A labeled plane tree in the LVE.

Taking into account that the derivatives w.r.t. σ and σ † bring factors −
√

λ

ND−1 and
√

λ

ND−1 respectively, and we

finally obtain

W(J, J̄ ;λ,N) = ND−1
∑
n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
σ (j)

))]
. (117)

where Tn is the unique combinatorial tree to which the plane tree T �
n,ι reduces. The product over d is the ordered

product of resolvents and external sources encountered when going around the tree. We chose as start point of this
product the vertex i1 but, as the trace is cyclic, one can chose any other vertex i2, i3 and so on as the start vertex. We
can now prove our first result concerning the LVE expansion.

A.2.2. Proof of the convergence Theorem 6
Every tree Tn with assigned degrees of the vertices d1, . . . , dn, has 2n−1di1 ! · · ·dik !

∏
i �=ik

(di − 1)! associated plane
trees with oriented edges and marked vertices T �

n,ι , corresponding to the two possible orientations of every tree edge
and the permutations of all but one of the halfedges touching each vertex (plus a choice dir of where to place the mark
on the marked vertices).

As the number of combinatorial trees with assigned degrees d1, . . . , dn is (n−2)!
(d1−1)!···(dn−1)! we get

∑
T �

n,ι

1 = 2n−1
n∑

d1,...,dn=1∑
di=2n−2

(n − 2)!
(d1 − 1)! · · · (dn − 1)!di1 ! · · ·dik !

∏
i �=ik

(dik − 1)!

= 2n−1(n − 2)!
n∑

d1,...,dn=1∑
di=2n−2

di1 · · ·dik = 2n−1(n − 2)!
(

2n + k − 3

n − 2

)
, (118)

as the sums over di yield the coefficient of the term of degree x2n−2 in the expansion of[
x

(
1

1 − x

)′]k
xn−k

(1 − x)n−k
= xn

(1 − x)n+k
= xn

∑
p

(
n + k + p − 1

p

)
xp. (119)
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We bound tr(
∏

Ai) ≤ N
∏‖Ai‖, and take into account ‖R(σ)‖ ≤ 1 for λ ≥ 0. The Gaussian integrals are normal-

ized, and the integrals over the parameters u are bounded by 1, thus

∣∣W(J, J̄ ;λ,N)
∣∣ ≤ ND

∑
n≥1

1

n! |λ|n−1
n∑

k=0

1

k!
∥∥JJ †

∥∥k
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

1

= ND
∑
n≥1

1

n! |λ|n−1
n∑

k=0

1

k!
∥∥JJ †

∥∥k n!
(n − k)!2n−1(n − 2)!

(
2n + k − 3

n − 2

)

= ND
∑
n≥1

(
2|λ|)n−1

n∑
k=0

∥∥JJ †
∥∥k (2n + k − 3)!

k!(n − k)!(n + k − 1)! , (120)

and using (2n+k−3)!
k!(n−k)!(n+k−1)! < 32n+k−1 we get

∣∣W(J, J̄ ;λ,N)
∣∣ ≤ 1

2 · 3λ
ND

∑
n≥1

(
2 · 32|λ|)n n∑

k=0

(
3
∥∥JJ †

∥∥)k, (121)

which converges for 0 ≤ λ < 2−13−2 and ‖JJ †‖ < 3−1. �

A.2.3. Proof of the main constructive Theorem 7
We use the invariance under unitary transformations. We add a fictitious integral over the unitary group U(N), i.e. we
write

W(J, J̄ ;λ,N) =
∫

U(N)

[dU ]W(J, J̄ ;λ,N), (122)

which of course holds as
∫
U(N)

[dU ] = 1. Now, for all fixed U , we perform the change of variables of Jacobian 1,

σ (i) → U†σ (i)U in Eq. (117). The Gaussian measure is invariant under this change of variables, hence

W(J, J̄ ;λ,N) = ND−1
∑
n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)
×

∫
[dU ]

k∏
d=1

[
UJJ †U†]

l
ξd−1(1)

j
ξd−1(1)

[ ∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
σ (j)

)]
j
ξd−1(1)

l
ξd (1)

. (123)

Rearranging the terms in the product over d we have

W(J, J̄ ;λ,N)

= ND−1
∑
n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . σ (n)

)∫ [dU ]
k∏

d=1

[
UJJ †U†]

ld jd

[ ∏
j∈Ξ [d→ξ(d)]

R
(
σ (j)

)]
jd lξ(d)

. (124)
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The integral over the unitary group of a product of matrix elements is (see [7,8])∫
U(N)

[dU ]
k∏

d=1

Uldαd
U

†
βdjd

=
∑
σ,τ

Wg
(
N,στ−1) k∏

d=1

δldjσ(d)
δαdβτ(d)

, (125)

where σ and τ run over the permutations of k elements and Wg(N,σ ) is Weingarten’s function [7,8]. We will use
below the fact that the Weingarten function respects [7,8]

lim
N→∞N2k−c(σ )Wg(N,σ ) =

c(σ )∏
s=1

(−1)|Cs(σ )|−1 1

|Cs(σ )|
(

2|Cs(σ )| − 2

|Cs(σ )| − 1

)
, (126)

according to corollary 2.7 of [8].
We thus obtain

W(J, J̄ ;λ,N) = ND−1
∑
n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)( k∏
d=1

[
JJ †]

αdβd

[ ∏
j∈Ξ [d→ξ(d)]

R
(
σ (j)

)]
jd lξ(d)

)

×
∑
σ,τ

Wg
(
N,στ−1) k∏

d=1

δld jσ(d)
δαdβτ(d)

. (127)

The external sources group into a product of traces. Following the indices we see that βd → αd → βτ(d) . . . thus each
trace of a product of insertions reproduces a cycle in the permutation τ . Denoting these cycles Cr(τ), and their length
|Cr(τ)| (hence τ is written τ = C1(τ ) · · ·Cc(τ)(τ )) we get

k∏
d=1

[
JJ †]

αdβd
δαdβτ(d)

=
c(τ)∏
r=1

tr
[(

JJ †)|Cr(τ)|]
. (128)

Similarly, the indices j, l follow the cycles of the permutation σξ as jd → lξ(d) → jσξ(d) . . . , thus the generating
function of the cumulants is

W(J, J̄ ;λ,N) = ND−1
∑
n≥1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)∑
σ,τ

Wg
(
N,στ−1) c(τ)∏

r=1

tr
[(

JJ †)|Cr(τ)|]

×
c(σξ)∏
h=1

tr

[|Ch(σξ)|∏
d=1

( ∏
j∈Ξ [(σξ)d−1(q)→ξ(σξ)d−1(q)]

R
(
σ (j)

))]
(129)

with q any element in the cycle Ch(σξ). The cumulants are defined according to Eq. (72) as the partial derivatives of
W(J, J̄ ;λ,N). It follows that the distribution is trace invariant, as the non-trivial cumulants at order 2k are written as
sums over graphs B, whose connected components are the cycles over the external insertions JJ †. To each graph one
has several possible τ associated permutations. The graph B fixes the lengths of the cycles of τ , hence all permutations
with the same cycle structure (that is all conjugated permutations) correspond to the same graph. We denote [B] the
conjugacy class of permutations corresponding to B. The number of cycles of τ ∈ [B] is the number of connected
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components of the graph B, C(B) = c(τ ). We now show that the cumulants are properly uniformly bounded. We
bound the Weingarten function using Eq. (126) and we bound the traces of products of resolvent by N . Taking into
account that the Gaussian integrals are normalized, and the integrals over the parameters u are bounded by 1, we get
a bound for each graph B contributing to a cumulant of order 2k (using K ′(B) as a dustbin notation for a constant
independent of N , but depending on B)

∣∣K(B,μN)
∣∣ ≤ K ′(B)N−2k(D−1)ND−1

∞∑
n=k

1

n! |λ|n 1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∑
σ∈S(k)

τ∈[B]

N−2k+c(στ−1)+c(σξ). (130)

By Lemma 8, c(ξ) + c(σξ) + c(τ ) + c(στ−1) ≤ 2c(ξ) + 2k and taking into account that ξ is a cyclic permutation,
c(ξ) = 1, and that the sums over τ and σ do not depend on n, we get a bound

K ′(B)ND−2k(D−1)−C(B)
∞∑

n=k

|λ|n2n−1 (2n + k − 3)!
(n − k)!(n + k − 1)!

≤ K ′(B)ND−2k(D−1)−C(B)k!
∞∑

n=k

|λ|n2n−132n+k−1 = K(B)ND−2k(D−1)−C(B), (131)

for some constant K(B).
In order to conclude that μ

(4)
N is properly uniformly bounded (Definition 4) we must show that K(B(2),N) con-

verges to some finite limit when N → ∞. We show this and compute the limit in Lemma 9, Section A.2.5.

A.2.4. Proof of the Borel summability Theorem 9
Consider a complex λ in the right half complex plane, λ = |λ|eıϕ,−π

2 ≤ ϕ ≤ π
2 . Using ‖1 + ρeıα‖ > | sinα| ⇒

‖R(σ)‖ < 1
| cos(ϕ/2)| <

√
2, counting k + 2(n − 1) resolvents for a tree with n vertices out of which k are marked and

using (2n+k−3)!
k!(n−k)!(n+k−1)! < 32n+k−1 we bound W(J, J̄ ;λ,N) in Eq. (117) by

∣∣N−DW(J, J̄ ;λ,N)
∣∣ ≤

∑
n≥1

1

n! |λ|n−1
n∑

k=0

1

k!
∥∥JJ †

∥∥k 1

| cos(ϕ/2)|k+2(n−1)

n∑
i1,i2,...,ik=1

id �=id′

∑
T �

n,ι

1

≤
∑
n≥1

1

n!
|λ|n−1

| cos(ϕ/2)|2(n−1)

n∑
k=0

1

k!
( ‖JJ †‖

| cos(ϕ/2)|
)k

n!
(n − k)!2n−1(n − 2)!

(
2n + k − 3

n − 2

)

≤
∑
n≥1

(
4|λ|)n−1

n∑
k=0

(√
2
∥∥JJ †

∥∥)k32n+k−1, (132)

which is convergent for ‖JJ †‖ < 3−12−1/2 and |λ| < 2−23−2, hence it certainly converges in the Borel disk13 36 <

�( 1
λ
).

To compute the remainder RN,r(λ) we separate N−DW(J, J̄ ;λ,N) into two terms: the terms with n < r + 1 and
the ones with n ≥ r + 1. The terms with n ≥ r + 1 are all in the remainder and admit the bound∣∣∣∣∣N−1

∞∑
n=r+1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
σ (j)

))]∣∣∣∣∣
13As (�λ)2 + (�λ)2 < 1

36 �λ implies 0 ≤ �λ ≤ 1
36 hence (�λ)2 + (�λ)2 < 1

362 .
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≤
∞∑

n=r+1

1

n! |λ|n−1
n∑

k=0

1

k!
∥∥JJ †

∥∥k
√

2
k+2(n−1) n!

(n − k)!2n−1(n − 2)!
(

2n + k − 3

n − 2

)

≤
∞∑

n=r+1

|4λ|n−1
n∑

k=0

∥∥√
2JJ †

∥∥k32n+k−1 ≤ |λ|rKr (133)

with K some constant and both ‖JJ †‖ and λ small enough, which is certainly bounded by Krr!|λ|r . It remains to
find a good bound for the contribution to the remainder of the terms with n < r + 1,

N−1
r∑

n=1

1

n! (−λ)n−1
n∑

k=0

1

k!
n∑

i1,i2,...,ik=1
id �=id′

∑
T �

n,ι

∫ 1

0

( ∏
(i,j)∈Tn

duij

)
(134)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
σ (j)

))]
. (135)

For each plane tree, we use a Taylor expansion with integral remainder of the product of resolvents up to some order
to be chosen later

f (
√

λ) =
s−1∑
q=0

1

q!
[

∂q

∂tq

(
f (

√
tλ)

)]
t=0

+ 1

(s − 1)!
∫ 1

0
(1 − t)s−1 ds

dt s

(
f (

√
tλ)

)
dt. (136)

The first terms yield some series in λ, as the Gaussian integral is non-zero only for an even number of insertions. For
every resolvent appearing in the product we have, taking into account that σ − σ † commutes with R(σ),

∂t

[
1

1 +√
tλ/ND−1(σ − σ †)

]
cd

= − 1

2
√

t

√
λ/ND−1

[
R(tσ )

(
σ − σ †)R(tσ )

]
cd

= 1

2t

(∑
ab

σab

∂

∂σab

+
∑
ab

σ
†
ba

∂

∂σ
†
ba

)
R(tσ )cd . (137)

Taking into account the copies we get,

∂t

(
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξk−1(1)→ξk(1)]

R
(
tσ (j)

))])

=
(

1

2t

∑
i

(∑
ab

σ
(i)
ab

∂

∂σ
(i)
ab

+
∑
ab

σ
(i)†
ba

∂

∂σ
(i)†
ba

))
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
tσ (j)

))]
. (138)

Integrating by parts we get

∂t

[∫ 1

0

( ∏
(i,j)∈Tn

duij

)∫
dμwij (Tn,u)1⊗1

(
σ (1), . . . , σ (n)

)
tr

[ →∏
d∈C(ξ)

JJ †
( ∏

j∈Ξ [d→ξ(d)]
R
(
σ (j)

))]]

=
∫ 1

0

( ∏
(i,j)∈Tn

duij

)



Universality for random tensors 1519

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)(∑
i,j

1

2t
wij (Tn,u)

(∑
ab

∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

+
∑
ab

∂

∂σ
(j)
ab

∂

∂σ
(i)†
ba

))

× tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
tσ (j)

))]
. (139)

When acting with ∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

on the trace one obtains two
√

t factors in the numerator which are canceled by the

denominator 1
2t

. It follows that the derivatives with respect to t only act on resolvents and the derivative of order s is

∂s

∂ts

[∫ 1

0

( ∏
(i,j)∈Tn

duij

)∫
dμwij (Tn,u)1⊗1

(
σ (1), . . . , σ (n)

)
tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
tσ (j)

))]]

=
∫ 1

0

( ∏
(i,j)∈Tn

duij

)

×
∫

dμwij (Tn,u)1⊗1
(
σ (1), . . . , σ (n)

)(∑
i,j

1

2t
wij (Tn,u)

(∑
ab

∂

∂σ
(i)
ab

∂

∂σ
(j)†
ba

+
∑
ab

∂

∂σ
(j)
ab

∂

∂σ
(i)†
ba

))s

× tr

[
k∏

d=1

(
JJ †

∏
j∈Ξ [ξd−1(1)→ξd (1)]

R
(
tσ (j)

))]
. (140)

When computing explicitly the derivative operators acting on the trace one generates ribbon loop edges decorating the
plane tree14 T �

n,ι . The traces recompose to reconstitute the product of R(σ) and JJ † on each face of this graph. An
example is presented in Fig. 18 consisting in the tree of Fig. 17 decorated by two loop edges. Its contribution is

tr
[
R
(
tσ (2)

)
R
(
tσ (3)

)]
tr
[
R
(
tσ (5)

)
R
(
tσ (6)

)]
tr
[
JJ †R

(
tσ (1)

)
R
(
tσ (2)

)
R
(
tσ (3)

)
R
(
tσ (2)

)
R
(
tσ (4)

)
JJ †

× R
(
tσ (4)

)
R
(
tσ (2)

)
R
(
tσ (1)

)
R
(
tσ (5)

)
R
(
tσ (6)

)
R
(
tσ (5)

)
R
(
tσ (1)

)]
. (141)

Bounding again the resolvents by
√

2, and the traces by N times the norm, each such term is bounded by

√
2
k+2(n−1)+2s

( |λ|
ND−1

)s∥∥JJ †
∥∥k

N1+s , (142)

Fig. 18. A plane tree decorated by loop edges.

14The new edges are called loop edges in order to be distinguished from the tree edges of T �
n,ι .
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as the number of faces of the ribbon graph obtained from the plane tree T �
n,k by adding the s loop edges is at most

1 + s.
The initial tree has 2(n − 1) + k resolvents. Every derivative brings a new resolvent, hence the number of contrac-

tions (the number of ways one can connect the loop edges on the tree) is[
2(n − 1) + k

][
2(n − 1) + k + 1

] · · · [2(n − 1) + k + 2s − 1
] = [2(n − 1) + k + 2s − 1]!

[2(n − 1) + k − 1]! . (143)

Choosing s = r − (n− 1), and taking into account that wij < 1, the Gaussian integrals are normalized and the integral
over dt is bounded by 1, the remainder term is bounded by

N−1
r∑

n=1

1

n! |λ|n−1
n∑

k=0

1

k!
n!

(n − k)!2n−1(n − 2)!
(

2n + k − 3

n − 2

)

× [2(n − 1) + k − 1 + 2r − 2(n − 1)]!
(r − n)![2(n − 1) + k − 1]!

√
2
k+2r

( |λ|
ND−1

)r−n+1∥∥JJ †
∥∥k

Nr−n+2

≤ |λ|r22r

r∑
n=1

n∑
k=0

∥∥√
2JJ †

∥∥k 1

k!(n − k)!
(2n + k − 3)!
(n + k − 1)!

(2r + k − 1)!
(r − n)![2(n − 1) + k − 1]! . (144)

We have 1
k!(n−k)!

(2n+k−3)!
(n+k−1)! < 32n+k−1 < 33r and (2r+k−1)!

(r−n)![2(n−1)+k−1]! < 32r+k−1(r − n + 2)! < 33r (r + 1)!. Moreover∑r
n=1

∑n
k=0 1 < (r +1)2 thus for ‖√2JJ †‖ < 1 we get a bound on the contribution of the first terms to the remainder(

223333)r |λ|r (r + 1)3r! < (
223333e3)r r!|λ|r . (145)

Note that although the bound we have established might not appear tight, in fact it is: the r! growth of the remainder
is not an artifact, but it is generated by the proliferation of the Wick contractions in a graph with loop edges.

A.2.5. The large N covariance
The main message of this section is that, because the perturbation series is Borel summable, the N → ∞ limit of
K(B(2),N) is entirely captured by the N → ∞ limit of its perturbation series.

Lemma 9. We have

lim
N→∞K

(
B(2),N

) = −1 + √
1 + 8λ

4λ
. (146)

Proof. Using the techniques developed in the proof of Theorem 7 one can show that limN→∞ K(B(2),N) = K(B(2))

exists. Instead of doing this, we show how the Borel summability Theorem 9 can be used to compute K(B(2)) analyt-
ically.

By Theorem 9, K(B(2),N) is Borel summable in λ uniformly in N . We denote K(B(2),N)n the term of order λn

in the Taylor expansion of K(B(2),N) in λ. From Theorem 8 we conclude that the series

B(t,N) =
∑
n≥0

1

n! (−t)nK
(
B(2),N

)
n
, (147)

is an absolutely convergent in t uniformly in N for |t | small enough. According to Eq. (76), K(B(2),N)n is a sum over
all the connected D + 1 colored graphs G with ∂G = B(2), having n subgraphs of colors 1,2, . . . ,D, H(G) = n, such
that all this subgraphs are B(4) (recall that B(4) denotes the graph of the melonic invariant of the quartic perturbation)

K
(
B(2),N

)
0 = 1, K

(
B(2),N

)
n

=
∑

G,∂G=B(2),H(G)=n,

∀H∈H(G),H=B(4)

Q(G)

n! O(G,N), for n ≥ 1, (148)
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where Q(G) counts the number of contraction schemes which give the graph G and

O(G,N) = N(D−1)H(G)−(D−1)E0(G)+∑
i F 0i

int(G)

N−2(D−1)k(∂G)+D−C(∂G)
≤ 1. (149)

As we are interested in the N → ∞ limit we separate K(B(2),N)n into a leading order term (in 1/N ) and a rest
term,

K
(
B(2),N

)
n

= K
(
B(2)

)
n
+ R(1)

(
B(2),N

)
n
, lim

N→∞R(1)
(
B(2),N

)
n

= 0,

(150)

K
(
B(2)

)
n

= lim
N→∞K

(
B(2),N

)
n

=
∑

G,∂G=B(2),H(G)=n,

∀H∈H(G)⇒H=B(4);O(G,N)=1

Q(G)

n! .

To compute K(B(2))n we first identify the graphs G with O(G,N) = 1 and count their factors Q(G). As all G con-
tributing to K(B(2),N)n have H(G) = n, E0(G) = 2n + 1, k(∂G) = 1 and C(∂G) = 1 we conclude that

O(G,N) = 1 ⇒
∑

i

F 0i
int(G) = (D − 1)n. (151)

The graphs G can be identified by a simple trick. To each G with external vertices a and ā and external edges (of color
0) (a, v̄) and (v, ā) we associate the connected closed D + 1 colored graph G̃ obtained by deleting (a, v̄) and (v, ā)

and adding an edge (of color 0) (v, v̄). The graph G̃ has k(G̃) = 2n white (and 2n black) vertices, as B(4) has two white
and two black vertices. It follows that the total number of faces of G̃ is written using Eq. (29) as a function of its degree
F(G̃) = D(D−1)

2 2n + D − 2
(D−1)!ω(G̃). On the other hand the number of faces of G̃ can be counted as follows. All the

faces of colors ij , 0 < i < j of G̃ come from some B(4), hence
∑

0<i<j F ij (G̃) = n
∑

0<i<j F ij (B(4)) = n(D − 1)2.

The D external faces of G become D internal faces of G̃, hence the total number of faces of colors 0i of G̃ is∑
i F

0i (G̃) = D + F 0i
int(G̃) = D + n(D − 1). We conclude that ω(G̃) = 0, thus G̃ is a melonic graph.

This allows one to compute both the number of distinct graphs G at a given order, as well as the number of
contractions Q(G) leading to a graph G. First note that B(4) is a melonic graph represented by the tree with two
vertices connected by an edge of color 1. Then the tree T representing G̃ becomes,15 by deleting the edges and leaves
of color 0, a collection of n edges of color 1, as depicted in Fig. 19 (to simplify the figure we did not represent the
leaves of color different from 0). The number of contractions Q(G) leading to a graph G corresponding to G̃ is 2nn!.
The 2n factor comes from the choice of which one of the two vertices of every tree edge of color 1 is hooked towards
the root, and the n! from the permutation symmetry between the edges of colors 1. The number of such trees is 1

n+1

(2n
n

)
as T becomes a binary rooted16 tree with n vertices by contracting all the edges of color 1. Thus

K
(
B(2)

)
n

= 1

n!
(
n!2n

) 1

n + 1

(
2n

n

)
= 2n

n + 1

(
2n

n

)
, (152)

Fig. 19. The tree T of a leading order graph.

15Recall that by deleting the color 0 in T one obtains a collection of trees representing its bubbles with colors 1,2, . . . ,D which are all B4.
16The root of T is chosen as the melon containing the vertex v.



1522 R. Gurau

and

K
(
B(2),N

)
n

= 2n

n + 1

(
2n

n

)
+ R(1)

(
B(2),N

)
n
, lim

N→∞R(1)
(
B(2),N

)
n

= 0. (153)

Thus, B(t,N) is written as

B(t,N) = B(t) + B(1)(t,N),
(154)

B(t) =
∑
n≥0

1

n! (−t)n
2n

n + 1

(
2n

n

)
, B(1)(t,N) =

∑
n

1

n! (−t)nR(1)
(
B(2),N

)
n
.

The leading order term B(t) is an entire function and admits the bound |B(t)| ≤ ∑
n≥0

1
(n+1)! (8t)n ≤ e8t . For |t | small

enough the rest term B(1)(t,N) is absolutely convergent in t uniformly in N and

lim
N→∞B(1)(t,N) =

∑
n

1

n! (−t)n lim
N→∞R(1)

(
B(2),N

)
n

= 0. (155)

According to Theorem 8 the function B(t,N) admits an analytic continuation in a strip hence (as B(t) is an entire
function), B(1)(t,N) admits an analytic continuation in a strip also. Moreover, as |B(t,N)| ≤ Bet/R for some B and
R independent of N and |B(t)| ≤ e8t , we have |B(1)(t,N)| ≤ B ′et/R′

with B ′ and R′ independent of N . Finally,
limN→∞ B(1)(t,N) = 0 in the strip as limN→∞ B(1)(t,N) = 0 is analytic in the strip and limN→∞ B(1)(t,N) = 0 for
|t | small enough.

Using again Theorem 8 we have

K
(
B(2),N

) = 1

λ

∫ ∞

0
dte−t/λB(t,N) = 1

λ

∫ ∞

0
dte−t/λB(t) + 1

λ

∫ ∞

0
dte−t/λB(1)(t,N),

(156)

lim
N→∞K

(
B(2),N

) = 1

λ

∫ ∞

0
dte−t/λB(t) + lim

N→∞
1

λ

∫ ∞

0
dte−t/λB(1)(t,N).

We compute the first term

1

λ

∫ ∞

0
dte−t/λB(t) = 1

λ

∫ ∞

0
dte−t/λ

∑
n≥0

1

n! (−t)n
2n

n + 1

(
2n

n

)
=

∑
n≥0

(−2λ)n
1

n + 1

(
2n

n

)

= −1 + √
1 + 8λ

4λ
, (157)

while, using the a priori estimate on |B(1)(t,N)| and Lebesgue’s dominated convergence theorem, the second term is

lim
N→∞

1

λ

∫ ∞

0
dte−t/λB(1)(t,N) = 1

λ

∫ ∞

0
dte−t/λ lim

N→∞B(1)(t,N) = 0. (158)
�

Appendix B: Other scalings of the cumulants

A natural question is to what extent the results presented in this paper can be generalized for different scalings of the
cumulants. As already mentioned the scaling ND−1 of the Gaussian is the unique scaling which leads to convergent
expectations for all invariants, not only for subclasses of invariants.

An interesting question is what happens if one allows the scaling of the cumulants to depend on finer details of the
associated graphs. Of course if this extra scaling suppresses some of the cumulants the results hold. The interesting
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question is how much these scaling can be boosted, while still having a large N limit (universal or not). One particular
scaling one can consider is to boost each invariant by a factor NΩ(B)

κ2k[T�n1 , T̄�̄n1̄
, . . . , T̄�̄nk̄

] =
∑

B=⋃C(B)
ρ=1 Bρ

k(B)=k

N−2(D−1)k(B)+D−C(B)+Ω(B)K(B,N)

C(B)∏
ρ=1

δ
Bρ

nn̄ , (157)

with Ω(B) its convergence order (note that the convergence order, like the degree, factors over the connected compo-
nents of the graph Ω(B) = ∑

ρ Ω(Bρ)).
So far we cannot provide any example of a measure which saturates these bounds. It is however interesting to

briefly discuss them. We will show below that if a measure saturates these bounds and if it admits a large N limit,
then this large N limit is not Gaussian. Furthermore we provide a necessary and sufficient condition for the large N

limit of such a measure to exist.
The expectation of an observable is written again as a sum over doubled graphs G,

N−1+Ω(B)μN

(
TrB(T, T̄)

)
=

∑
G⊃B

∏
α

K
(
B(α)

)
× N

−(2/(D−1)!)ω(G)+(2/(D−1)!)minG′\E0=B ω(G′)+∑
α,ρ minGρ (α)\E0=Bρ (α)

ω(Gρ(α))−D
∑

α(C(B(α)−1))
, (158)

where we have expressed the convergence orders Ω(B) and Ω(Bρ(α)) as

Ω(B) = 2

(D − 1)! min
G′\E0=B

ω
(
G′)− 2

(D − 2)!ω(B),

(159)

Ω
(
Bρ(α)

) = 2

(D − 1)! min
Gρ(α)\E0=Bρ(α)

ω
(
Gρ(α)

) − 2

(D − 2)!ω
(
Bρ(α)

)
,

with G′ and Gρ(α) covering graphs of B and Bρ(α). Again the contribution of G is dominant only if all the cumulants
have a unique connected component C(B(α)) = 1, that is B(α) ≡ B1(α), which will be the case we consider from
now on. Let us denote the total scaling with N in Eq. (158)

Λ(G) ≡ − 2

(D − 1)!ω(G) + 2

(D − 1)! min
G′\E0=B

ω
(
G′)+

∑
α

min
G(α)\E0=B(α)

ω
(
G(α)

)
=

∑
i

F 0i (G) + Dαmax − sup
G′\E0=B

∑
i

F 0i
(
G′)−

∑
α

sup
G(α)\E0=B(α)

∑
i

F 0i
(
G(α)

)
. (160)

If B(α) are all dipoles B(2), corresponding to G = Gmin ∪ ⋃
E0(Gmin)B(2) for the minimal covering graphs Gmin of

B, we obtain Λ(Gmin ∪ ⋃
E0(Gmin)) = 0, as all G(α) are of degree 0. This reproduces the usual Gaussian evaluation.

For the other doubled graphs G there are three possible scenarios

• for all G ⊃ B, G �= Gmin ∪⋃
E0(Gmin)B(2), Λ(G) < 0. In this case the model admits a Gaussian large N limit.

• for all G ⊃ B, G �= Gmin ∪⋃
E0(Gmin)B(2), Λ(G) ≤ 0, and there exists G �= Gmin ∪⋃

E0(Gmin) B(2) with Λ(G) = 0. In
this case the model admits a large N limit which is not Gaussian.

• there exists G ⊃ B with Λ(G) > 0. In this case the model does not admit a large N limit.

The example of Fig. 20 shows that we are not in the first case. It consists in an observable and a cumulant in D = 3.
The minimal graphs for both the observable and the cumulant have 6 faces of colors 0i (hence degree ω(G(α)min) =
ω(G ′ min) = 3). The doubled graph has 9 faces of colors 0i (that is degree ω(G) = 6) thus Λ(G) = 0.

It is for now an open question to discern in which of the remaining two cases we are. One can show using a
Cauchy–Schwarz inequality that for any observable with 2k(B) vertices

∑
i F

0i (G) ≤ Dk(B) for all doubled graphs
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Fig. 20. A doubled graph scaling like the Gaussian contribution.

G ⊃ B, and that the bound is saturated (by the case in which one has only one cumulant whose associated graph is the
mirror image of the observable B, as it is the case in Fig. 20). It follows that the model admits a large N limit if and
only if, for all connected graphs B, one has

max
G\E0=B

∑
i

F 0i (G) ≥ Dk(B) + D

2
. (161)

While we have not been able to find any example in which this inequality is violated, we have not been able to
prove it either.

Should this inequality hold, one would get a non-Gaussian large N limit, which of course would be very interesting.
Note however that if the models admits a large N limit with these scalings, then the leading order is rather non-trivial.
The example in Fig. 20 shows that at leading order one gets contributions from graphs which do not correspond to
manifolds. Also, it is not clear (and it does seem unlikely) that the leading order graphs form a summable family like
the planar or the melonic graphs.
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Ergodic Theory (Buşteni, 1983) 556–588. Lecture Notes in Mathematics 1132. Springer, New York, 1983. MR0799593
[38] D. Voiculescu. Limit laws for random matrices and free products. Invent. Math. 104 (1991) 201–220. MR1094052
[39] D. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992.

MR1217253

http://arxiv.org/abs/arXiv:math-ph/0402073
http://www.ams.org/mathscinet-getitem?mr=2217291
http://arxiv.org/abs/arXiv:hep-th/9808042
http://www.ams.org/mathscinet-getitem?mr=1660199
http://arxiv.org/abs/arXiv:hep-th/0201157
http://www.ams.org/mathscinet-getitem?mr=1915297
http://www.ams.org/mathscinet-getitem?mr=0143556
http://www.ams.org/mathscinet-getitem?mr=0278668
http://arxiv.org/abs/arXiv:1004.0861v2
http://www.ams.org/mathscinet-getitem?mr=2859190
http://www.ams.org/mathscinet-getitem?mr=0806252
http://www.ams.org/mathscinet-getitem?mr=0887102
http://www.ams.org/mathscinet-getitem?mr=1182621
http://arxiv.org/abs/arXiv:hep-th/0401128
http://www.ams.org/mathscinet-getitem?mr=2160797
http://arxiv.org/abs/arXiv:1006.0714
http://www.ams.org/mathscinet-getitem?mr=2738259
http://arxiv.org/abs/arXiv:1011.2726
http://www.ams.org/mathscinet-getitem?mr=2802384
http://arxiv.org/abs/arXiv:1102.5759
http://www.ams.org/mathscinet-getitem?mr=2909101
http://arxiv.org/abs/arXiv:0907.2582
http://www.ams.org/mathscinet-getitem?mr=2793930
http://arxiv.org/abs/arXiv:1105.6072
http://www.ams.org/mathscinet-getitem?mr=2826235
http://arxiv.org/abs/arXiv:1101.4182
http://arxiv.org/abs/arXiv:1109.4812
http://www.ams.org/mathscinet-getitem?mr=2942819
http://www.ams.org/mathscinet-getitem?mr=2036721
http://www.ams.org/mathscinet-getitem?mr=1128863
http://www.ams.org/mathscinet-getitem?mr=2129906
http://www.ams.org/mathscinet-getitem?mr=2266879
http://www.ams.org/mathscinet-getitem?mr=2808038
http://www.ams.org/mathscinet-getitem?mr=1174294
http://arxiv.org/abs/arXiv:0706.1224
http://www.ams.org/mathscinet-getitem?mr=2342423
http://arxiv.org/abs/arXiv:1003.1037
http://www.ams.org/mathscinet-getitem?mr=2742808
http://www.ams.org/mathscinet-getitem?mr=0558468
http://www.ams.org/mathscinet-getitem?mr=1268597
http://arxiv.org/abs/arXiv:0906.0510v10
http://www.ams.org/mathscinet-getitem?mr=2784665
http://www.ams.org/mathscinet-getitem?mr=0799593
http://www.ams.org/mathscinet-getitem?mr=1094052
http://www.ams.org/mathscinet-getitem?mr=1217253

	Introduction
	Notation and main theorems
	Random matrices
	Universality for random matrices

	Random tensors
	Closed D+1-colored graphs
	Melons
	First order
	Second order
	Order k+1


	Open graphs and the boundary graph
	Gaussian distribution for tensors
	Melonic observables
	Arbitrary observables

	Proof of Theorem 1
	Melonic observables: Direct computation
	Arbitrary observables

	Proof of Theorem 2
	Melonic observables: Direct computation
	Arbitrary observables


	Appendix A: Perturbed Gaussian measures
	The perturbative theorem
	Proof of Theorem 4
	Obtaining GcupE0ext (G) 
	Bounds


	The constructive theorems
	Proof of the constructive expansion Theorem 5
	Proof of the convergence Theorem 6
	Proof of the main constructive Theorem 7
	Proof of the Borel summability Theorem 9
	The large N covariance


	Appendix B: Other scalings of the cumulants
	Acknowledgements
	References

