155 research outputs found

    Bifurcations of piecewise smooth flows:perspectives, methodologies and open problems

    Get PDF
    In this paper, the theory of bifurcations in piecewise smooth flows is critically surveyed. The focus is on results that hold in arbitrarily (but finitely) many dimensions, highlighting significant areas where a detailed understanding is presently lacking. The clearest results to date concern equilibria undergoing bifurcations at switching boundaries, and limit cycles undergoing grazing and sliding bifurcations. After discussing fundamental concepts, such as topological equivalence of two piecewise smooth systems, discontinuity-induced bifurcations are defined for equilibria and limit cycles. Conditions for equilibria to exist in n-dimensions are given, followed by the conditions under which they generically undergo codimension-one bifurcations. The extent of knowledge of their unfoldings is also summarized. Codimension-one bifurcations of limit cycles and boundary-intersection crossing are described together with techniques for their classification. Codimension-two bifurcations are discussed with suggestions for further study

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Two-parameter nonsmooth grazing bifurcations of limit cycles: classification and open problems

    Get PDF
    This paper proposes a strategy for the classification of codimension-two grazing bifurcations of limit cycles in piecewise smooth systems of ordinary differential equations. Such nonsmooth transitions (C-bifurcations) occur when the cycle interacts with a discontinuity boundary of phase space in a non-generic way. Several such codimension-one events have recently been identified, causing for example period-adding or sudden onset of chaos. Here, the focus is on codimension-two grazings that are local in the sense that the dynamics can be fully described by an appropriate Poincaré map from a neighbourhood of the grazing point (or points) of the critical cycle to itself. It is proposed that codimension-two grazing bifurcations can be divided into three distinct types: either the grazing point is degenerate, or the the grazing cycle is itself degenerate (e.g. non-hyperbolic) or we have the simultaneous occurrence of two grazing events. A careful distinction is drawn between their occurrence in systems with discontinuous states, discontinuous vector fields, or that have discontinuity in some derivative of the vector field. Examples of each kind of bifurcation are presented, mostly derived from mechanical applications. For each example, where possible, principal bifurcation curves characteristic to the codimension-two scenario are presented and general features of the dynamics discussed. Many avenues for future research are opened.

    Canards and curvature: nonsmooth approximation by pinching

    Get PDF
    In multiple time-scale (singularly perturbed) dynamical systems, canards are counterintuitive solutions that evolve along both attracting and repelling invariant manifolds. In two dimensions, canards result in periodic oscillations whose amplitude and period grow in a highly nonlinear way: they are slowly varying with respect to a control parameter, except for an exponentially small range of values where they grow extremely rapidly. This sudden growth, called a canard explosion, has been encountered in many applications ranging from chemistry to neuronal dynamics, aerospace engineering and ecology. Canards were initially studied using nonstandard analysis, and later the same results were proved by standard techniques such as matched asymptotics, invariant manifold theory and parameter blow-up. More recently, canard-like behaviour has been linked to surfaces of discontinuity in piecewise-smooth dynamical systems. This paper provides a new perspective on the canard phenomenon by showing that the nonstandard analysis of canard explosions can be recast into the framework of piecewise-smooth dynamical systems. An exponential coordinate scaling is applied to a singularly perturbed system of ordinary differential equations. The scaling acts as a lens that resolves dynamics across all time-scales. The changes of local curvature that are responsible for canard explosions are then analyzed. Regions where different time-scales dominate are separated by hypersurfaces, and these are pinched together to obtain a piecewise-smooth system, in which curvature changes manifest as discontinuity-induced bifurcations. The method is used to classify canards in arbitrary dimensions, and to derive the parameter values over which canards form either small cycles (canards without head) or large cycles (canards with head)

    Hidden bifurcations and attractors in nonsmooth dynamical system

    Get PDF
    We investigate the role of hidden terms at switching surfaces in piecewise smooth vector fields. Hidden terms are zero everywhere except at the switching surfaces, but appear when blowing up the switching surface into a switching layer. When discontinuous systems do surprising things, we can often make sense of them by extending our intuition for smooth system to the switching layer. We illustrate the principle here with a few attractors that are hidden inside the switching layer, being evident in the flow, despite not being directly evident in the vector field outside the switching surface. These can occur either at a single switch (where we will introduce hidden terms somewhat artificially to demonstrate the principle), or at the intersection of multiple switches (where hidden terms arise inescapably). A more subtle role of hidden terms is in bifurcations, and we revisit some simple cases from previous literature here, showing that they exhibit degeneracies inside the switching layer, and that the degeneracies can be broken using hidden terms. We illustrate the principle in systems with one or two switches. </jats:p
    corecore