19,506 research outputs found

    Finite Element Based Tracking of Deforming Surfaces

    Full text link
    We present an approach to robustly track the geometry of an object that deforms over time from a set of input point clouds captured from a single viewpoint. The deformations we consider are caused by applying forces to known locations on the object's surface. Our method combines the use of prior information on the geometry of the object modeled by a smooth template and the use of a linear finite element method to predict the deformation. This allows the accurate reconstruction of both the observed and the unobserved sides of the object. We present tracking results for noisy low-quality point clouds acquired by either a stereo camera or a depth camera, and simulations with point clouds corrupted by different error terms. We show that our method is also applicable to large non-linear deformations.Comment: additional experiment

    Reconstruction of 3D faces by shape estimation and texture interpolation

    Get PDF
    This paper aims to address the ill-posed problem of reconstructing 3D faces from single 2D face images. An extended Tikhonov regularization method is connected with the standard 3D morphable model in order to reconstruct the 3D face shapes from a small set of 2D facial points. Further, by interpolating the input 2D texture with the model texture and warping the interpolated texture to the reconstructed face shapes, 3D face reconstruction is achieved. For the texture warping, the 2D face deformation has been learned from the model texture using a set of facial landmarks. Our experimental results justify the robustness of the proposed approach with respect to the reconstruction of realistic 3D face shapes
    corecore