182,203 research outputs found

    Electron transport properties of graphene nanoribbons with Gaussian deformation

    Full text link
    Gaussian deformation in graphene structures exhibits an interesting effect in which flower-shaped confinement states are observed in the deformed region [Carrillo-Bastos et al., Phys. Rev. B 90 041411 (2014)]. To exploit such a deformation for various applications, tunable electronic features including a bandgap opening for semi-metallic structures are expected. Besides, the effects of disorders and external excitations also need to be considered. In this work, we present a systematic study on quantum transport of graphene ribbons with Gaussian deformation. Different levels of deformation are explored to find a universal behavior of the electron transmission. Using a tight-binding model in combination with Non-Equilibrium Green Functions formalism, we show that Gaussian deformation influences strongly the electronic properties of ribbons in which the electron transmission decreases remarkably in high energy regions even if small deformations are considered. Interestingly, it unveils that the first plateau of the transmission of semi-metallic armchair ribbons is just weakly affected in the case of small deformations. However, significant large Gaussian bumps can induce a strong drop of this plateau and a transport gap is formed. The transmission at the zero energy is found to decrease exponentially with increasing the size of the Gaussian bump. Moreover, the gap of semi-conducting ribbons is enlarged with large deformations. The opening or the widening of the transport gap in large deformed armchair structures is interpreted by a formation of a three-zone behavior along the transport direction of the hopping profile. On the other hand, a transport gap is not observed in zigzag ribbons regardless of the size of Gaussian bumps. This behavior is due to the strong localization of edge states at the energy point E = 0...Comment: 25 pages, 12 figure

    Excitons in the wurtzite AlGaN/GaN quantum-well heterostructures

    Full text link
    We have theoretically studied exciton states and photoluminescence spectra of strained wurtzite AlGaN/GaN quantum-well heterostructures. The electron and hole energy spectra are obtained by numerically solving the Schr\"odinger equation, both for a single-band Hamiltonian and for a non-symmetrical 6-band Hamiltonian. The deformation potential and spin-orbit interaction are taken into account. For increasing built-in field, generated by the piezoelectric polarization and by the spontaneous polarization, the energy of size quantization rises and the number of size quantized electron and hole levels in a quantum well decreases. The exciton energy spectrum is obtained using electron and hole wave functions and two-dimensional Coulomb wave functions as a basis. We have calculated the exciton oscillator strengths and identified the exciton states active in optical absorption. For different values of the Al content x, a quantitative interpretation, in a good agreement with experiment, is provided for (i) the red shift of the zero-phonon photoluminescence peaks for increasing the quantum-well width, (ii) the relative intensities of the zero-phonon and one-phonon photoluminescence peaks, found within the non-adiabatic approach, and (iii) the values of the photoluminescence decay time as a function of the quantum-well width.Comment: 32 pages, 9 figure

    Couple stress theory for solids

    Get PDF
    AbstractBy relying on the definition of admissible boundary conditions, the principle of virtual work and some kinematical considerations, we establish the skew-symmetric character of the couple-stress tensor in size-dependent continuum representations of matter. This fundamental result, which is independent of the material behavior, resolves all difficulties in developing a consistent couple stress theory. We then develop the corresponding size-dependent theory of small deformations in elastic bodies, including the energy and constitutive relations, displacement formulations, the uniqueness theorem for the corresponding boundary value problem and the reciprocal theorem for linear elasticity theory. Next, we consider the more restrictive case of isotropic materials and present general solutions for two-dimensional problems based on stress functions and for problems of anti-plane deformation. Finally, we examine several boundary value problems within this consistent size-dependent theory of elasticity

    Mean-field approach to superdeformed high-spin states in 40Ca and neutron-rich 50S regions

    Full text link
    With the use of the symmetry-unrestricted cranked SHF method in the 3D coordinate-mesh representation, a systematic search for the SD and HD rotational bands in the N=Z nuclei from 32S to 48Cr has been done, and SD and HD solutions have been found in 32S, 36Ar, 40Ca, 44Ti, and in 36Ar, 40Ca, 44Ti, 48Cr, respectively. The SD band in 40Ca is found to be extremely soft against both the axially symmetric (Y30) and asymmetric (Y31) octupole deformations. Possible presense of SD states in neutron-rich sulfur isotopes from 46S to 52S has also been investigated, and deformation properties of neutron skins both in the ground and SD states are discussed.Comment: 10 pages including 9 ps figures, Talk at International Symposium on "Frontiers of Collective Motion 2002", November 6-9, 2002, Univ. of Aizu, Japa

    Quadrupole Deformation β\beta and γ\gamma Constraint in a Framework of Antisymmetrized Molecular Dynamics

    Full text link
    We propose a new method of the β\beta-γ\gamma constraint for quadrupole deformation in antisymmetrized molecular dynamics (AMD) to describe various cluster and shell-model structures in the ground and excited states of light nuclei. We apply this method to N=6 isotones, 10^{10}Be, 12^{12}C, 9^{9}Li, and 11^{11}B, and find various structures as functions of the deformation parameters, β\beta and γ\gamma. In these nuclei, shell-model-like structures appear in the small β\beta region, while cluster structures develop well in the large β\beta region where various geometric configurations of clusters are obtained depending on the γ\gamma parameter. For 10^{10}Be and 12^{12}C, we superpose the basis AMD wave functions obtained by the β\beta-γ\gamma constraint method to calculate energy spectra, and prove the advantages of the present method of the two-dimensional β\beta-γ\gamma constraint in the framework of AMD.Comment: 23pages, 14 figure

    What can be learned from binding energy differences about nuclear structure: the example of delta V_{pn}

    Full text link
    We perform an analysis of a binding energy difference called delta V_{pn}(N,Z) =- 1/4(E(Z,N)-E(Z,N-2)-E(Z-2,N)+ E(Z-2,N-2) in the framework of a realistic nuclear model. Using the angular-momentum and particle-number projected generator coordinate method and the Skyrme interaction SLy4, we analyze the contribution brought to delta V_{pn} by static deformation and dynamic fluctuations around the mean-field ground state. Our method gives a good overall description of delta V_{pn} throughout the chart of nuclei with the exception of the anomaly related to the Wigner energy along the N=Z line. The main conclusions of our analysis are that (i) the structures seen in the systematics of delta V_{pn} throughout the chart of nuclei can be easily explained combining a smooth background related to the symmetry energy and correlation energies due to deformation and collective fluctuations; (ii) the characteristic pattern of delta V_{pn} around a doubly-magic nucleus is a trivial consequence of the asymmetric definition of delta V_{pn}, and not due to a the different structure of these nuclei; (iii) delta V_{pn} does not provide a very reliable indicator for structural changes; (iv) \delta V_{pn} does not provide a reliable measure of the proton-neutron interaction in the nuclear EDF, neither of that between the last filled orbits, nor of the one summed over all orbits; (v) delta V_{pn} does not provide a conclusive benchmark for nuclear EDF methods that is superior or complementary to other mass filters such as two-nucleon separation energies or Q values.Comment: 19 pages and 12 figure

    Theory of size-dependent resonance Raman intensities in InP nanocrystals

    Get PDF
    The resonance Raman spectrum of InP nanocrystals is characterized by features ascribable to both longitudinal (LO) and transverse (TO) optical modes. The intensity ratio of these modes exhibits a strong size dependence. To calculate the size dependence of the LO and TO Raman cross sections, we combine existing models of Raman scattering, the size dependence of electronic and vibrational structure, and electron vibration coupling in solids. For nanocrystals with a radius >10 Å, both the LO and TO coupling strengths increase with increasing radius. This, together with an experimentally observed increase in the electronic dephasing rate with decreasing size, allows us to account for the observed ratio of LO/TO Raman intensities
    corecore