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a b s t r a c t

By relying on the definition of admissible boundary conditions, the principle of virtual work and some
kinematical considerations, we establish the skew-symmetric character of the couple-stress tensor in
size-dependent continuum representations of matter. This fundamental result, which is independent of
the material behavior, resolves all difficulties in developing a consistent couple stress theory. We then
develop the corresponding size-dependent theory of small deformations in elastic bodies, including
the energy and constitutive relations, displacement formulations, the uniqueness theorem for the corre-
sponding boundary value problem and the reciprocal theorem for linear elasticity theory. Next, we con-
sider the more restrictive case of isotropic materials and present general solutions for two-dimensional
problems based on stress functions and for problems of anti-plane deformation. Finally, we examine sev-
eral boundary value problems within this consistent size-dependent theory of elasticity.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Classical continuum mechanics is an approximation based on
the assumption that matter is continuously distributed throughout
the body. This theory provides a reasonable basis for analyzing the
behavior of materials at the macro-scale, where the microstructure
size-dependency can be neglected. Experiments show, however,
that the mechanical behavior of materials in small scales is differ-
ent from their behavior at macro-scales. Any attempt to drop the
continuity assumption in a modified theory is bound to make the
analysis extremely difficult and computationally intensive. There-
fore, we need to develop a consistent size-dependent continuum
mechanics, which accounts for the microstructure of materials.
This theory must span many scales and, of course, reduce to clas-
sical continuum mechanics for macro-scale size problems.

New measures of deformation, which are length related, such as
the curvature tensor, are needed in a more complete continuum
theory. As a consequence, such a theory will also require the intro-
duction of couple-stresses. The existence of couple-stress in mate-
rials was originally postulated by Voigt (1887). However, Cosserat
and Cosserat (1909) were the first to develop a mathematical
model to analyze materials with couple-stresses. In the original
Cosserat theory, the kinematical quantities were the displacement
and a material microrotation, hypothesized to be independent of
the continuum mechanical rotation. This latter quantity, which
may be called the macrorotation, is the usual rotation vector
defined as one half of the curl of the displacement field.
ll rights reserved.
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A couple stress theory, using macrorotation as the true
kinematical rotation, was developed much later by Toupin
(1962), Mindlin and Tiersten (1962), Koiter (1964), and others for
elastic bodies. In these developments, the gradient of the rotation
vector is used as a curvature tensor. Unfortunately, there are some
difficulties with these formulations. Perhaps the most disturbing
troubles are the indeterminacy of the spherical part of the
couple-stress tensor and the appearance of the body couple in
the constitutive relation for the force-stress tensor (Mindlin and
Tiersten, 1962). This inconsistent theory is called the indetermi-
nate couple stress theory in the literature (Eringen, 1968). As a re-
sult of the inconsistency, a number of alternative theories have
been developed.

One branch revives the idea of microrotation, inherited from
Cosserat and Cosserat (1909) and is called micropolar theories
(e.g., Mindlin, 1964; Eringen, 1968; Nowacki, 1986; Chen and
Wang, 2001). However, microrotation, which brings extraneous
degrees of freedom, is not a proper continuum mechanical concept.
How can the effect of the discontinuous microstructure of matter
be represented mathematically by an artificial continuous microro-
tation? Thus, a consistent size-dependent continuum mechanics
theory should involve only true continuum kinematical quantities
without recourse to any additional artificial degrees of freedom.

The other main branch, labeled second gradient theories, avoids
the idea of microrotation by introducing gradients of strain, rota-
tion or various combinations thereof (e.g., Mindlin and Eshel,
1968; Yang et al., 2002; Lazar et al., 2005). Although these theories
use true continuum representations of deformation, the resulting
formulations are not consistent with proper boundary condition
specifications and energy conjugacy within the principle of virtual
work.
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Here we develop the consistent couple stress theory by consid-
ering true continuum kinematical displacement and rotation. We
demonstrate that the couple-stress tensor is skew-symmetric and
the skew-symmetric part of the gradient of the rotation tensor is
the consistent curvature tensor. These two tensors satisfy pair con-
jugacy in the virtual work principle. Although the gradient of the
strain tensor might appear in the skew-symmetric force-stress
constitutive relations, it is not a fundamental measure of deforma-
tion. For example, in elastic bodies, strain gradients do not appear
in the stored energy density function.

Interestingly, this theory can be considered as the modification
of the developments of Mindlin and Tiersten (1962) and Koiter
(1964). We will see that some results from the previous indetermi-
nate couple stress theory for two dimensional cases can still be used.

We organize the current paper in the following manner. In Sec-
tion 2, we present force-stresses, couple-stresses and the equilib-
rium equations per the usual definitions in the existing couple
stress literature. Based on purely kinematical considerations as
provided in Section 3, we first suggest the mean curvature tensor
as the measure of deformation compatible with the couple-stress
tensor for the infinitesimal theory. Then, by using the virtual work
principle in Section 4, we demonstrate that in couple stress mate-
rials, body couples must be transformed to an equivalent body
force and surface traction system. More importantly, based on
resolving properly the boundary conditions, we show that the
couple-stress tensor is skew-symmetric and, thus, completely
determinate. This also confirms the mean curvature tensor as the
fundamental deformation measure, energetically conjugate to the
couple-stress tensor. Afterwards, in Section 5, the general theory
of small deformation elasticity is developed. The constitutive and
equilibrium equations for a linear elastic material also are derived
under the assumption of infinitesimal deformations in Section 6,
along with the uniqueness theorem for well-posed boundary value
problems and the reciprocal theorem. Section 7 provides the
general solution based on stress functions for two-dimensional
infinitesimal linear elasticity, while the corresponding anti-plane
deformation problem is examined in Section 8. Section 9 presents
solutions for several elementary elasticity problems and one more
complicated case. Finally, Section 10 contains a summary and some
general conclusions.
2. Stresses and equilibrium

Consider a material continuum occupying a volume V bounded
by a surface S as the current configuration. For a size dependent
continuum theory, it is assumed that the transfer of the interaction
in the current configuration occurs between two particles of the
body through a surface element dS with unit normal vector ni by
means of a force vector tðnÞi dS and a moment vector mðnÞi dS, where
tðnÞi and mðnÞi are force- and moment-traction vectors. Surface forces
and couples are then represented by generally non-symmetric
force-stress rji and couple-stress lji tensors, where

tðnÞi ¼ rjinj ð1Þ
mðnÞi ¼ ljinj ð2Þ

The force- and couple- stress tensors can be generally decomposed
into symmetric and skew-symmetric parts

rji ¼ rðjiÞ þ r½ji� ð3Þ
lji ¼ lðjiÞ þ l½ji� ð4Þ

Notice that here we have introduced parentheses surrounding a
pair of indices to denote the symmetric part of a second order ten-
sor, whereas square brackets are associated with the skew-symmet-
ric part.
Now consider an arbitrary part of the material continuum occu-
pying a volume Va enclosed by boundary surface Sa. Under quasi-
static conditions, the linear and angular balance equations for
this part of the body areZ

Sa

tðnÞi dSþ
Z

Va

FidV ¼ 0 ð5ÞZ
Sa

eijkxjt
ðnÞ
k þmðnÞi

h i
dSþ

Z
Va

eijkxj Fk þ Ci
� �

dV ¼ 0 ð6Þ

where Fi and Ci are the body force and the body couple per unit vol-
ume of the body, respectively. Here eijk is the permutation tensor or
Levi–Civita symbol.

By using the relations (1) and (2), along with the divergence
theorem, and noticing the arbitrariness of volume Va, we finally ob-
tain the differential form of the equilibrium equations, for the
usual couple stress theory, as

rji;j þ Fi ¼ 0 ð7Þ
lji;j þ eijkrjk þ Ci ¼ 0 ð8Þ
where the comma denotes differentiation with respect to the spa-
tial coordinates.

In classical continuum mechanics lji = 0 and Ci = 0. Therefore,
angular equilibrium (8) shows that the force-stress tensor is
symmetric

rji ¼ rij ¼ rðjiÞ; r½ji� ¼ 0 ð9a;bÞ

This means that the tensor rji has six independent components and
we have three linear equilibrium equations in (7). In the classical
theory, the extra three equations are obtained by developing consti-
tutive relations.

In a couple stress theory, the tensors rji and lji have 18 compo-
nents altogether, but we have only six equilibrium equations.
Therefore, it seems we need 12 extra equations from constitutive
relations. This has been the main trouble in developing a consistent
couple stress theory in the past. Similarly to the classical case, we
should expect that the angular equilibrium equation (8) will fur-
nish some insight into the subtle structure of stresses in a contin-
uum. This will reduce the number of independent components of
stresses from 18. We explore this by studying the boundary condi-
tions, virtual work principle and some kinematical considerations
and discover the skew-symmetric character of the couple-stress
tensor in continuum representations of matter. We consider the
kinematical aspects in the following section.

3. Kinematics

Here we consider the kinematics of a continuum under the
assumptions of infinitesimal deformation. In Cartesian coordinates,
we define ui to represent the displacement field of the continuum
material. Consider the neighboring points P and Q with position
vectors xi and xi + dxi in the reference configuration. The relative
displacement of point Q with respect to P is

dui ¼ ui;jdxj ð10Þ

where ui,j is the displacement gradient tensor at point P. As we
know, although this tensor is important in analysis of deformation,
it is not itself a suitable measure of deformation. This tensor can be
decomposed into symmetric and skew-symmetric parts

ui;j ¼ eij þxij ð11Þ

where

eij ¼ uði;jÞ ¼
1
2

ui;j þ uj;i
� �

ð12Þ

xij ¼ u½i;j� ¼
1
2

ui;j � uj;i
� �

ð13Þ
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Of course, in (12) and (13), the tensors eij and xij are the small
deformation strain and rotation tensor, respectively. The rotation
vector xi dual to the rotation tensor xij is defined by

xi ¼
1
2
eijkxkj ¼

1
2
eijkuk;j ð14aÞ

which in vectorial form is written

x ¼ 1
2
r� u ð14bÞ

Alternatively, this rotation vector is related to the rotation tensor
through

xji ¼ eijkxk ð15Þ

which shows

x1 ¼ �x23; x2 ¼ x13; x3 ¼ �x12 ð16a-cÞ

Therefore, the relative displacement is decomposed into

dui ¼ duð1Þi þ duð2Þi ð17Þ

where

duð1Þi ¼ eijdxj ð18Þ
duð2Þi ¼ xijdxj ð19Þ

Then, xij is seen to generate a rigid-like rotation of element dxi

about point P, where

duð2Þi dxi ¼ xijdxidxj ¼ 0 ð20Þ

Since xij does not contribute to the elongation or contraction of ele-
ment dxi, it cannot appear in a tensor measuring material stretches.
Therefore, as we know, the symmetric strain tensor eij is the suit-
able measure of deformation in classical infinitesimal theories, such
as Cauchy elasticity.

In couple stress theory, we expect to have an additional tensor
measuring the curvature of the arbitrary fiber element dxi. To find
this tensor, we consider the field of rotation vector xi. The relative
rotation of two neighboring points P and Q is given by

dxi ¼ xi;jdxj ð21Þ

where the tensor xi,j is the gradient of the rotation vector at point P.
It is seen that the components x1,1, x2,2 and x3,3 represent the tor-
sion of the fibers along corresponding coordinate directions x1, x2

and x3, respectively, at point P. The off-diagonal components repre-
sent the curvature of these fibers in planes parallel to coordinate
planes. For example, x1,2 is the curvature of a fiber element in
the x2 direction in a plane parallel to the x2x3 plane, while x2,1 is
the curvature of a fiber element in the x1 direction in a plane paral-
lel to the x1x3 plane.

The suitable measure of curvature must be a tensor measur-
ing pure curvature of an arbitrary element dxi. Therefore, in this
tensor, the components x1,1, x2,2 and x3,3 cannot appear.
However, simply deleting these components from the tensor
xi,j does not produce a tensor. Consequently, we expect that
the required tensor is the skew-symmetric part of xi,j. By
decomposing the tensor xi,j into symmetric and skew-symmetric
parts, we obtain

xi;j ¼ vij þ jij ð22Þ

where

vij ¼ xði;jÞ ¼
1
2

xi;j þxj;i
� �

ð23Þ

jij ¼ x½i;j� ¼
1
2

xi;j �xj;i
� �

ð24Þ
The symmetric tensor vij results from applying the strain operator
to the rotation vector, while the tensor jij is the rotation of the rota-
tion vector at point P. From (23)

v11 ¼ x1;1; v22 ¼ x2;2; v33 ¼ x3;3 ð25a-cÞ

and

v12 ¼ v21 ¼
1
2

x1;2 þx2;1ð Þ ð26aÞ

v23 ¼ v32 ¼
1
2

x2;3 þx3;2ð Þ ð26bÞ

v13 ¼ v31 ¼
1
2

x1;3 þx3;1ð Þ ð26cÞ

The diagonal elements v11, v22 and v33 defined in (25) represent
pure torsion of fibers along the x1, x2 and x3 directions, respectively,
as mentioned above. On the other hand, from careful examination
of (26), we find that v12, v23 and v13 measure the deviation from
sphericity (Hamilton, 1866) of deforming planes parallel to x1x2,
x2x3 and x1x3, respectively. Furthermore, we may recognize that this
symmetric vij tensor must have real principal values, representing
the pure twists along the principal directions. Thus, we refer to vij

as the torsion tensor and we expect that this tensor will not contrib-
ute as a fundamental measure of deformation in a continuum mate-
rial. Instead, we anticipate that the fundamental curvature tensor is
the skew-symmetric rotation of rotation tensor jij. This will be con-
firmed in the next section through consideration of couple-stresses
and virtual work.

We also may arrive at this outcome by noticing that only the
part of dxi that is normal to element dxi produces pure curvature.
Therefore, by decomposing dxi into

dxi ¼ dxð1Þi þ dxð2Þi ð27Þ

where

dxð1Þi ¼ vijdxj ð28Þ

dxð2Þi ¼ jijdxj ð29Þ

we notice

dxð2Þi dxi ¼ jijdxidxj ¼ 0 ð30Þ

This shows that dxð2Þi is the component of dxi normal to dxi. There-
fore, the tensor jij seems to be the suitable curvature tensor, which
is represented by

jij
� �

¼
0 j12 j13

�j12 0 j23

�j13 �j23 0

2
64

3
75 ð31Þ

where the non-zero components of this tensor are

j12 ¼ �j21 ¼
1
2

x1;2 �x2;1ð Þ ð32aÞ

j23 ¼ �j32 ¼
1
2

x2;3 �x3;2ð Þ ð32bÞ

j13 ¼ �j31 ¼
1
2

x1;3 �x3;1ð Þ ð32cÞ

Now we may recognize that j12, j23, and j13 are the mean curva-
tures of planes parallel to the x1x2, x2x3, x3x1 planes, respectively,
at point P after deformation. Therefore, the skew-symmetric tensor
jij will be referred to as the mean curvature tensor or simply the
curvature tensor. The curvature vector ji dual to this tensor is de-
fined by

ji ¼
1
2
eijkxk;j ¼

1
2
eijkjkj ð33Þ
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Thus, this axial vector is related to the mean curvature tensor
through

jji ¼ eijkjk ð34Þ

which shows

j1 ¼ �j23; j2 ¼ j13; j3 ¼ �j12 ð35a-cÞ

It is seen that the mean curvature vector can be expressed as

j ¼ 1
2
r�x ð36Þ

This shows that j is the rotation of the rotation vector, which can
also be expressed as

j ¼ 1
4
r� ðr� uÞ ¼ 1

4
rðr � uÞ � 1

4
r2u ð37aÞ

ji ¼
1
4

uk;ki �
1
4

ui;kk ¼
1
4

uk;ki �
1
4
r2ui ð37bÞ

From (37b) and (13), we can obtain the interesting relation

ji ¼
1
2
xji;j ð37cÞ

What we have presented here is applicable to small deformation
theory, which requires the components of the strain tensor and
mean curvature vector to be infinitesimal. These conditions can
be written as

jeijj � 1 ð38Þ

jjij �
1
lS

ð39Þ

where lS is the smallest characteristic length in the body.
While analogous measures of strain and curvature can be ob-

tained for finite deformation theory, this would take us beyond
the scope of the present work, which is directed toward the infin-
itesimal linear couple stress theory.
4. Principle of virtual work and its consequences for continua

Once again consider the material continuum occupying a vol-
ume V bounded by a surface S. The standard form of the equilib-
rium equations for this medium was given in (7) and (8). Let us
multiply (7) by a virtual displacement dui and integrate over the
volume and also multiply (8) by the corresponding virtual rotation
d xi, where

dxi ¼
1
2
eijkduk;j ð40Þ

and integrate this over the volume as well. Therefore, we haveZ
V

rji;j þ Fi
� �

duidV ¼ 0 ð41ÞZ
V

lji;j þ eijkrjk þ Ci

� �
dxidV ¼ 0 ð42Þ

By noticing the relation

rji;jdui ¼ rjidui
� �

;j � rjidui;j ð43Þ

and using the divergence theorem, the relation (41) becomesZ
V
rjidui;jdV ¼

Z
S

tðnÞi duidSþ
Z

V
FiduidV : ð44Þ

Similarly, by using the relation

lji;jdxi þ eijkrjkdxi ¼ ljidxi

� �
;j
� ljidxi;j � rjkdxjk ð45Þ
Equation (42) becomesZ
V
ljidxi;jdV �

Z
V
rjidxijdV ¼

Z
S

mðnÞi dxidSþ
Z

V
CidxidV ð46Þ

Then, by adding (44) and (46), we obtainZ
V
ljidxi;jdV þ

Z
V
rjiðdui;j � dxijÞdV

¼
Z

S
tðnÞi duidSþ

Z
V

FiduidV þ
Z

S
mðnÞi dxidSþ

Z
V

CidxidV ð47Þ

However, by noticing the relation

deij ¼ dui;j � dxij ð48Þ

for compatible virtual displacement, we obtain the virtual work
theorem asZ

V
rjideijdV þ

Z
V
ljidxi;jdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidS

þ
Z

V
FiduidV þ

Z
V

CidxidV ð49Þ

Since deij is symmetric, we also have

rjideij ¼ rðjiÞdeij ð50Þ

Thus, the principle of virtual work can be written asZ
V
rðjiÞdeijdV þ

Z
V
ljidxi;jdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidS

þ
Z

V
FiduidV þ

Z
V

CidxidV ð51Þ

The right hand side of (51) shows that the boundary conditions on the
surface of the body can be either vectors ui and xi as essential (geo-
metrical) boundary conditions, or tðnÞi and mðnÞi as natural (mechani-
cal) boundary conditions. The left hand side of (51) shows that r(ji)

and eij are energy conjugate tensors, and the skew symmetric part
of force-stress tensorr[ji] has no contribution to internal virtual work.
At this point, it is also seen that lji and xi,j are energy conjugate ten-
sors. Therefore, the compatible curvature tensor must be developed
from xi,j. The virtual work principle (51) shows that there is no room
for strain gradients as fundamental measures of deformation in a
consistent couple stress theory. Interestingly, (51) can reveal more
insight about the structure of this consistent couple stress theory.

Now, along those lines, we investigate the fundamental charac-
ter of the body couple Ci and couple-stress lji in a continuum. It is
seen that the termZ

V
CidxidV ð52Þ

in (51) is the only term in the volume that involves dxi. However,
dxi is not independent of dui in the volume, because we have the
relation

dxi ¼
1
2
eijkduk;j ð53Þ

Therefore, by using (53) in the integrand of (52), we find

Cidxi ¼
1
2

Cieijkduk;j ¼
1
2
ðeijkCidukÞ;j �

1
2
eijkCi;jduk ð54Þ

and, after applying the divergence theorem, the body couple virtual
work in (52) becomesZ

V
CidxidV ¼

Z
V

1
2
eijkCk;jduidV þ

Z
S

1
2
eijkCjnkduidS ð55Þ

which means that the body couple Ci transforms into an equivalent
body force 1

2 eijkCk;j in the volume and a force traction vector 1
2 eijkCjnk

on the bounding surface. This shows that in a continuum theory of
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materials, the body couple is not distinguishable from the body
force. Therefore, in couple stress theory, we must only consider
body forces. This is analogous to the impossibility of distinguishing
a distributed moment load in Euler–Bernoulli beam theory, in
which the moment load must be replaced by the equivalent distrib-
uted force load and end concentrated loads. Therefore, for a proper
couple stress theory, the equilibrium equations become

rji;j þ Fi ¼ 0 ð56Þ
lji;j þ eijkrjk ¼ 0 ð57Þ

where

Fþ 1
2
r� C! F in V ð58aÞ

tðnÞ þ 1
2

C� n! tðnÞ on S ð58bÞ

and the virtual work theorem reduces toZ
V
rðjiÞdeijdV þ

Z
V
ljidxi;jdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidS

þ
Z

V
FiduidV ð59Þ

Next, we investigate the fundamental character of the couple-stress
tensor based on boundary conditions.

As we mentioned, the prescribed boundary conditions on the
surface of the body can be either vectors ui and xi, or tðnÞi and
mðnÞi , which makes a total number of six boundary values for either
case. However, this is in contrast to the number of geometric
boundary conditions that can be imposed (Koiter, 1964). In partic-
ular, if components of ui are specified on the boundary surface,
then the normal component of the rotation xi corresponding to
twisting

xðnÞi ¼ xðnnÞni ¼ xknkni ð60Þ

where

xðnnÞ ¼ xknk ð61Þ

cannot be prescribed independently. However, the tangential com-
ponent of rotation xi corresponding to bending, that is

xðnsÞ
i ¼ xi �xðnnÞni ¼ xi �xknkni ð62Þ

may be specified in addition, and the number of geometric or essen-
tial boundary conditions that can be specified is therefore five.

Next, we let m(nn) and mðnsÞ
i represent the normal and tangential

components of the surface moment traction vector mðnÞi , respec-
tively, where

mðnnÞ ¼ mðnÞk nk ¼ ljininj ð63Þ

causes twisting, while

mðnsÞ
i ¼ mðnÞi �mðnnÞni ð64Þ

is responsible for bending.
From kinematics, since x(nn) is not an independent generalized

degree of freedom, its apparent corresponding generalized force
must be zero. Thus, for the normal component of the surface mo-
ment traction vector mðnÞi , we must enforce the condition

mðnnÞ ¼ mðnÞk nk ¼ ljininj ¼ 0 on S ð65Þ

Furthermore, the boundary moment surface virtual work in (55)
becomesZ

S
mðnÞi dxidS ¼

Z
S

mðnsÞ
i dxidS ¼

Z
S

mðnsÞ
i dxðnsÞ

i dS ð66Þ

This shows that a material in couple stress theory does not support
independent distributions of normal surface moment (or twisting)
traction m(nn), and the number of mechanical boundary conditions
also is five. In practice, it might seem that a given m(nn) has to be re-
placed by an equivalent shear stress and force system. Koiter (1964)
gives the detail analogous to the Kirchhoff bending theory of plates.
However, we should realize that there is a difference between cou-
ple stress theory and the Kirchhoff bending theory of plates. Plate
theory is an approximation for elasticity, which is a continuum
mechanics theory. However, couple stress theory is a continuum
mechanics theory itself without any approximation.

From the above discussion, we should realize that on the sur-
face of the body, a normal moment m(nn) cannot be applied. By
continuing this line of reasoning, we may reveal the subtle charac-
ter of the couple-stress tensor. First, we notice that the virtual
work theorem can be written for every arbitrary volume Va with
surface Sa within the body V. ThusZ

Va

rjideijdV þ
Z

Va

ljidxi;jdV ¼
Z

Sa

tðnÞi duidSþ
Z

Sa

mðnÞi dxidS

þ
Z

Va

FiduidV ð67Þ

For any point on this arbitrary surface with unit normal ni, we must
have

mðnnÞ ¼ ljininj ¼ 0 in V ð68Þ

Since ninj is symmetric and arbitrary in (68), lji must be skew-sym-
metric. Thus

lji ¼ �lij in V ð69Þ

This is the fundamental property of the couple-stress tensor in con-
tinuum mechanics, which has not been recognized previously. Here
we can see the crucial role of the virtual work theorem in this result.

In terms of components, the couple-stress tensor now can be
written as

½lij� ¼
0 l12 l13

�l12 0 l23

�l13 �l23 0

2
64

3
75 ð70Þ

and one can realize that the couple-stress actually can be consid-
ered as an axial vector. This couple-stress vector li dual to the ten-
sor lij can be defined by

li ¼
1
2
eijklkj ð71Þ

where we also have

eijklk ¼ lji ð72Þ

These relations simply show

l1 ¼ �l23; l2 ¼ l13; l3 ¼ �l12 ð73a-cÞ

It is seen that the surface moment traction vector can be expressed
as

mðnÞi ¼ ljinj ¼ eijknjlk ð74Þ

which can be written in vectorial form

mðnÞ ¼ n� l ð75Þ

This obviously shows that the moment traction vector m(n) is tan-
gent to the surface.

After discovering the skew-symmetric character of couple-
stress tensor lji, we investigate the structure of the force-stress
tensor rji. Using (72), the angular equilibrium equation (57) can
be expressed as

eijk lk;j þ rjk

� �
¼ 0 ð76Þ
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which indicates that lk,j + rjk is symmetric. Therefore, its skew-
symmetric part vanishes and

r½ji� ¼ �l½i;j� ¼ �
1
2

li;j � lj;i

� �
ð77Þ

which produces the skew-symmetric part of the force-stress tensor
in terms of the couple-stress vector. Therefore, the sole duty of the
angular equilibrium equation (57) is to produce the skew-symmetric
part of the force-stress tensor. This relation can be elaborated if we
consider the axial vector si dual to the skew-symmetric part of the
force-stress tensor r[ij], where

si ¼
1
2
eijkr½kj� ð78Þ

which also satisfies

eijksk ¼ r½ji� ð79Þ

or simply

s1 ¼ �r½23�; s2 ¼ r½13�; s3 ¼ �r½12� ð80a-cÞ

By using (77) in (78), we obtain

si ¼ �
1
2
eijkl½j;k� ¼

1
2
eijklk;j ð81aÞ

which can be written in vectorial form

s ¼ 1
2
r� l ð81bÞ

This simply shows that half of the curl of the couple-stress vector l
produces the skew-symmetric part of the force-stress tensor
through s. Interestingly, it is seen that

r � s ¼ 0 ð82Þ

Returning to the virtual work theorem, we notice since lji is skew-
symmetric

ljidxi;j ¼ ljidjij ð83Þ

which shows that the skew-symmetric mean curvature tensor jij is
energetically conjugate to the skew-symmetric couple-stress tensor
lji. This confirms our speculation of jij as a suitable curvature ten-
sor in Section 2. Furthermore, the virtual work theorem (59)
becomesZ

V
rðjiÞdeijdV þ

Z
V
ljidjijdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidS

þ
Z

V
FiduidV ð84Þ

Interestingly, by using the dual vectors of these tensors, we have

ljidjij ¼ eijplpejiqdjq ¼ �eijpeijqlpdjq ¼ �2dpqlpdjq

¼ �2lidji ð85Þ

which shows the conjugate relation between twice the mean curva-
ture vector �2ji and the couple-stress vector li. Thus, the principle
of virtual work can be writtenZ

V
ðrðjiÞdeij � 2lidjiÞdV ¼

Z
S

tðnÞi duidSþ
Z

S
mðnÞi dxidS

þ
Z

V
FiduidV ð86Þ

Now it is time to explain a very important aspect of specifying
boundary conditions. The natural and essential boundary conditions
tðnÞi and ui, respectively, are specified as in classical Cauchy theory.
On the other hand, the two new boundary conditions for couple
stress theory need more elaboration. In practice, the actual bound-
ary S is usually free of moment traction, which means this natural
boundary condition is zero (mðnÞi ¼ 0Þ everywhere on S. However,
couple-stresses lji can be created inside the volume V and non-zero
mðnÞi may exist on any arbitrary internal surface Sa. The essential
boundary condition, which is the tangential component of xi, usu-
ally cannot be specified on the actual boundary S, but once again
non-zero couple-stresses lji can be generated inside the domain V.

What we have presented so far is a continuum mechanics the-
ory of couple stress materials, independent of the material proper-
ties. We have shown that the actual number of independent
components of stresses are 9 components of r(ji) and li, and the
linear equilibrium equation (56) reduces to

rðjiÞ � l½i;j�
h i

;j
þ Fi ¼ 0 ð87Þ

Thus, we have nine stress components and three linear equilibrium
equations. The six extra required equations are obtained from con-
stitutive relations. In the following section, we specialize the theory
for elastic materials.
5. Infinitesimal size-dependent elasticity

Now, we develop the size-dependent theory of small deforma-
tion for elastic materials. In an elastic material, there is a stored
elastic energy density function W, where for arbitrary virtual
deformations about the equilibrium position, we have

dW ¼ rjideij þ ljidjij ¼ rðjiÞdeij � 2lidji ð88Þ

Therefore, W is a positive definite function of the symmetric strain
tensor eij and the mean curvature vector ji. Thus

W ¼W e;jð Þ ¼W eij;ji
� �

ð89Þ

However, for a variational analysis, the relation (88) should be writ-
ten as

dW ¼ rðjiÞdui;j � 2lidji ð90Þ

where the all components of dui,j and dji can be taken independent
of each other. From the relations (89) and (90), we obtain

rðjiÞ ¼
oW
oui;j

ð91Þ

2li ¼ �
oW
oji

ð92Þ

However, it is seen that

oW
oui;j
¼ oW

oekl

oekl

oui;j
ð93Þ

By noticing

ekl ¼
1
2

uk;l þ ul;k

� �
ð94Þ

we obtain

oekl

oui;j
¼ 1

2
dkidlj þ dlidkj

� �
ð95Þ

Therefore

oW
oui;j
¼ 1

2
oW
oekl

dkidlj þ dlidkj
� �

ð96Þ

which shows

oW
oui;j
¼ 1

2
oW
oeij
þ oW

oeji

� 	
ð97Þ
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Then

rðjiÞ ¼
1
2

oW
oeij
þ oW

oeji

� 	
ð98Þ

li ¼ �
1
2

oW
oji

ð99Þ

If we further agree to construct W, such that

oW
oeij
¼ oW

oeji
ð100Þ

we can write in place of (98)

rðjiÞ ¼
oW
oeij

ð101Þ

It is also seen that

l½i;j� ¼
1
2

li;j � lj;i

� �
¼ �1

4
oW
oji

� 	
;j
� oW

ojj

� 	
;i

" #
ð102Þ

Therefore, for the skew-symmetric part of the force-stress tensor,
we have

r½ji� ¼ �l½i;j� ¼
1
4

oW
oji

� 	
;j

� oW
ojj

� 	
;i

" #
ð103Þ

Finally, we obtain the constitutive relations as

rji ¼
1
2

oW
oeij
þ oW

oeji

� 	
þ 1

4
oW
oji

� 	
;j

� oW
ojj

� 	
;i

" #
ð104Þ

li ¼ �
1
2

oW
oji

ð105Þ

The total potential energy functional for an elastic body is defined
as

Pfug ¼
Z

V
WdV �

Z
V

FiuidV �
Z

S
tðnÞi uidS�

Z
S

mðnÞi xidS ð106Þ

It can be easily shown that this functional attains a minimum
when the displacement field corresponds to the elastic solution
that satisfies the equilibrium equations. The kinematics of defor-
mation and variation of (106) reveal an important character of
the stored energy density function W. We know there are two sets
of equilibrium equations (56) and (57) corresponding to linear and
angular equilibrium of an infinitesimal element of material. There-
fore, the geometrical boundary conditions are the displacement ui

and rotation xi as we discussed previously. As we showed in Sec-
tion 4, continuum mechanics supports the geometrical boundary
conditions ui and xðnsÞ

i , and their corresponding energy conjugate
mechanical boundary conditions tðnÞi and mðnsÞ

i . Consequently, there
is no other possible type of boundary condition in size-dependent
continuum mechanics. Therefore, in the variation of the total po-
tential energy P in (106), the stored energy density function W
at most can be in the form (89). This means at most the stored en-
ergy density function W is a function of the second derivative of
deformation in the form of the mean curvature vector ji, not
strain gradient. In other words, the continuum mechanics stored
energy function W cannot depend on third and higher order deriv-
atives of deformation.

6. Infinitesimal size-dependent linear elasticity

6.1. Strain energy and constitutive relations

For a linear elastic material, based on our development, the
quadratic positive definite stored energy density must be in the
general form
W e;jð Þ ¼ 1
2

Aijkleijekl þ
1
2

Bijjijj þ Cijkeijjk ð107Þ

The tensors Aijkl, Bij and Cijk contain the elastic constitutive coeffi-
cients and are such that W is positive definite. As a result, tensors
Aijkl and Bij are positive definite. The tensor Aijkl is actually equiva-
lent to its corresponding tensor in Cauchy elasticity. The symmetry
relations

Aijkl ¼ Aklij ¼ Ajikl ð108Þ
Bij ¼ Bji ð109Þ
Cijk ¼ Cjik ð110Þ

show that for the most general case the number of distinct compo-
nents for Aijkl , Bij and Cijk are 21, 6 and 18, respectively. Therefore,
the most general linear elastic anisotropic material is described
by 45 independent constitutive coefficients.

It is seen that the couple-stress vector and symmetric part of
force-stress tensor can be found as

li ¼ �
1
2

Bijjj �
1
2

Ckjiekj ð111Þ

rðjiÞ ¼ Aijklekl þ Cijkjk ð112Þ

Additionally, we find that

li;j ¼ �
1
2

Bimjm;j �
1
2

Ckmiekm;j ð113Þ

and the skew-symmetric part of this tensor is

l½i;j� ¼ �r½ji�

¼ �1
4

Bimjm;j þ
1
4

Bjmjm;i �
1
4

Ckmiekm;j þ
1
4

Ckmjekm;i ð114Þ

Therefore, for the force-stresses, we find

rji ¼ Aijklekl þ Cijkjk þ
1
4

Bimjm;j �
1
4

Bjmjm;i þ
1
4

Ckmiekm;j �
1
4

Ckmjekm;i

ð115Þ

It is seen that the strain gradient does appear in the skew-symmet-
ric part of the force-stress tensor. However, the strain gradient can-
not be considered as a fundamental measure of deformation,
because it does not appear directly in the stored energy density
(107).

For an isotropic material, the symmetry relations require

Aijkl ¼ kdijdkl þ ldikdjl þ ldildjk ð116Þ
Bij ¼ 16gdij ð117Þ
Cijk ¼ 0 ð118Þ

The moduli k and l have the same meaning as the Lamé constants
for an isotropic material in Cauchy elasticity. It is seen that only one
extra material constant g accounts for couple stress effects in an
isotropic material and the stored energy becomes

Wðe;jÞ ¼ 1
2

kðekkÞ2 þ leijeij þ 8gjiji ð119Þ

with the following restrictions on elastic constants for positive def-
inite stored energy

3kþ 2l > 0; l > 0; g > 0 ð120Þ

Then, the constitutive relations can be written

li ¼ �8gji ð121Þ
rðjiÞ ¼ kekkdij þ 2leij ð122Þ

Interestingly, it is seen that for an isotropic material

r � l ¼ li;i ¼ 0 ð123Þ
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By using the relation

ji ¼
1
4

uk;ki �
1
4

ui;kk ð124Þ

we obtain

li ¼ 2g r2ui � uk;ki

� �
ð125aÞ

or in vectorial form

l ¼ 2g r2u�r r � uð Þ
h i

ð125bÞ

Additionally,

li;j ¼ 2g r2ui;j � uk;kij

� �
ð126Þ

Therefore,

l½i;j� ¼ gr2 ui;j � uj;i
� �

ð127Þ

or

l½i;j� ¼ 2gr2xij ð128Þ

and we obtain

r½ji� ¼ �l½i;j� ¼ 2gr2xji ð129Þ

or by exchanging indices

r½ij� ¼ 2gr2xij ð130Þ

Recall that the axial vector si is dual to r[ij], as shown in (78). Then,
from (81a) and (121), si can be written in terms of the curvature
vector as

si ¼ �4geijkjk;j ð131Þ

Therefore, the constitutive relation for vector s is

s ¼ �4gr� j ð132aÞ

which can be written alternatively as

s ¼ �2gr�r�x ¼ 2gr2x ð132bÞ

or

s ¼ �gr�r�r� u ð132cÞ

This remarkable result shows that in an isotropic material the
vector s, corresponding to the skew-symmetric part of the stress
tensor, is proportional to the curl of the curl of the curl of the dis-
placement vector u.

By using the relations (122) and (129), the total force-stress ten-
sor can be written as

rji ¼ kekkdij þ 2leij þ 2gr2xji ð133Þ

We also notice that

lji ¼ �8gjji ¼ 4g xi;j �xj;i
� �

ð134Þ

which is more useful than li in practice.
It is seen that these relations are similar to those in the indeter-

minate couple stress theory (Mindlin and Tiersten, 1962; Koiter,
1964), when g0 = �g. Here we have derived the couple stress the-
ory for materials in which all former troubles with indeterminacy
disappear. There is no spherical indeterminacy and the second cou-
ple stress coefficient g0 depends on g, such that the couple-stress
tensor becomes skew-symmetric.

Interestingly, the ratio

g
l
¼ l2 ð135Þ

specifies a characteristic material length l, which is absent in
Cauchy elasticity, but is fundamental to small deformation couple
stress elasticity. We realize that this is the characteristic length in
an elastic material and that lS ? l in (39). Thus, the requirements
for small deformation elasticity are

jeijj � 1 ð136aÞ

jjij �
1
l

ð136bÞ
6.2. Displacement formulations

When the force-stress tensor (115) is written in terms of dis-
placements, as follows

rji ¼ Aijklekl þ Cijkjk þ
1
4

Ckmiekm;j �
1
4

Ckmjekm;i þ
1
4

Bimjm;j �
1
4

Bjmjm;i

¼ Aijkluk;l þ
1
4

Cijk um;mk �r2uk

� �
þ 1

4
Ckmiuk;mj �

1
4

Ckmjuk;mi

þ 1
16

Bik um;mkj �r2uk;j

� �
� 1

16
Bjk um;mki �r2uk;i

� �
ð137Þ

and is carried into the linear equilibrium equation (56), we obtain

Aijkluk;lj þ
1
4

Cijk um;mjk �r2uk;j

� �
þ 1

4
Ckmir2uk;m �

1
4

Ckmjuk;mij

þ 1
16

Bik r2um;mk �r2r2uk

� �
� 1

16
Bjk um;mkij �r2uk;ij

� �
þ Fi ¼ 0

ð138Þ

For an isotropic material, the force-stress tensor becomes

rji ¼ kekkdij þ 2leij � 2gr2xij

¼ kuk;kdij þ lðui;j þ uj;iÞ � gr2ðui;j � uj;iÞ ð139Þ

and for the linear equilibrium equation, we have

kþ lþ gr2
� �

uk;ki þ l� gr2
� �

r2ui þ Fi ¼ 0 ð140aÞ

which can be written in the vectorial form

kþ lþ gr2
� �

r r � uð Þ þ l� gr2
� �

r2uþ F ¼ 0 ð140bÞ

This relation can also be written as

kþ 2lð Þr r � uð Þ � l� gr2
� �

r�r� uþ F ¼ 0 ð141Þ

which was derived previously by Mindlin and Tiersten (1962) with-
in the context of the indeterminate couple stress theory. However,
recall that the Mindlin–Tiersten formulation involved two couple
stress parameters g and g0. In hindsight, the fact that g0 does not ap-
pear in (141) should have been an indication that this coefficient is
not independent of g. We now know that g0 = �g.

The general solution for the displacement in isotropic elasticity
also has been derived by Mindlin and Tiersten (1962) in terms of a
vector function G and scalar function G0 as

u ¼ G� l2rr � G� 1
4ð1� mÞr r � 1� l2r2

� �
Gþ G0

h i
ð142Þ

where m ¼ k
2ðkþlÞ is the Poisson’s ratio. These functions satisfy the

relations

lð1� l2r2Þr2G ¼ �F ð143aÞ
lr2G0 ¼ r � F ð143bÞ

These functions reduce to the Papkovich functions in the classical
theory, when l = 0. In general, it is easily seen that

r � u ¼ 1� 2m
2ð1� mÞ 1� l2r2

� �
r � G ð144aÞ

2x ¼ r� u ¼ r� G ð144bÞ
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6.3. Uniqueness theorem for boundary value problems

Now we investigate the uniqueness of the linear size-dependent
elasticity boundary value problem. The proof follows from the con-
cept of stored energy, similar to the approach for Cauchy elasticity.
By replacing the virtual deformation with the actual deformation
in the virtual work theorem (86), we obtainZ

V
ðrðjiÞeij � 2lijiÞdV ¼

Z
S

tðnÞi uidSþ
Z

S
mðnÞi xidSþ

Z
V

FiuidV

ð145Þ

Using the constitutive relations (111) and (112), we have

rðjiÞeij � 2liji ¼ Aijkleijekl þ Bijjijj þ 2Cijkeijjk ¼ 2W e;jð Þ ð146Þ

Therefore, (145) can be written as

2
Z

V
WdV ¼

Z
S

tðnÞi uidSþ
Z

S
mðnÞi xidSþ

Z
V

FiuidV ð147Þ

This relation gives twice the total stored energy in terms of the
work of external body forces and surface tractions.

Now, we consider the general boundary value problem. The pre-
scribed boundary conditions on the surface of the body can be any
well-posed combination of vectors ui and xi, tðnÞi and mðnÞi as
discussed on Section 4. Assume that there exist two different solu-

tions uð1Þi ; eð1Þij ;j
ð1Þ
i ;rð1Þji ;l

ð1Þ
i

n o
and uð2Þi ; eð2Þij ;j

ð2Þ
i ;rð2Þji ;l

ð2Þ
i

n o
to the

same problem with identical body forces and boundary conditions.
Thus, we have the equilibrium equations

rðaÞji;j þ Fi ¼ 0 ð148Þ

rðaÞ½ji� ¼ �lðaÞ½i;j� ð149Þ

where

lðaÞi ¼ �
1
2

BijjðaÞj �
1
2

Ckjie
ðaÞ
kj ð150aÞ

rðaÞðjiÞ ¼ Aijkle
ðaÞ
kl þ CijkjðaÞk ð150bÞ

and the superscript (a) references the solutions (1) and (2).
Let us now define the difference solution

u0i ¼ uð2Þi � uð1Þi ð151aÞ
e0ij ¼ eð2Þij � eð1Þij ð151bÞ

j0i ¼ jð2Þi � jð1Þi ð151cÞ
r0ji ¼ rð2Þji � rð1Þji ð151dÞ

l0i ¼ lð2Þi � lð1Þi ð151eÞ

Since the solutions
n

uð1Þi ; eð1Þij ;j
ð1Þ
i ;rð1Þji ;l

ð1Þ
i

o
and uð2Þi ; eð2Þij ;j

ð2Þ
i ;rð2Þji ;

n
lð2Þi

o
correspond to the same body forces and boundary conditions,

the difference solution must satisfy the equilibrium equations

r0ji;j ¼ 0 ð152Þ
r0½ji� ¼ �l0½i;j� ð153Þ

with zero corresponding boundary conditions. Consequently, twice
the total strain energy (147) for the difference solution isZ

V
2W 0dV ¼

Z
V

Aijkle0ije
0
kl þ Bijj0ij

0
i þ 2Cijke0ijj

0
k

� �
dV ¼ 0 ð154Þ

Since the stored energy density of the difference solution W0 is non-
negative, this relation requires

2W 0 ¼ Aijkle0ije
0
kl þ Bijj0ij

0
j þ 2Cijke0ijj

0
k ¼ 0 in V ð155Þ

However, the tensors Aijkl and Bij are positive definite and the tensor
Cijk is such that the energy W0 is non-negative. Therefore the strain,
curvature and associated stresses for the difference solution must
vanish

e0ij ¼ 0; j0i ¼ 0; r0ij ¼ 0; l0i ¼ 0 ð156a-dÞ

These require that the difference displacement u0i can be at most a
rigid body motion. However, if displacement is specified on part
of the boundary such that rigid body motion is prevented, then
the difference displacement vanishes everywhere and we have

uð1Þi ¼ uð2Þi ð157aÞ
eð1Þij ¼ eð2Þij ð157bÞ

jð1Þi ¼ jð2Þi ð157cÞ
rð1Þji ¼ rð2Þji ð157dÞ

lð1Þi ¼ lð2Þi ð157eÞ

Therefore, the solution to the boundary value problem is unique.
On the other hand, if only force and moment tractions are
specified over the entire boundary, then the displacement is not
unique and is determined only up to an arbitrary rigid body
motion.

6.4. Reciprocal theorem

We derive now the general reciprocal theorem for the equilib-
rium states of a linear elastic material under different applied
loads. Consider two sets of equilibrium states of compatible elastic

solutions uð1Þi ;xð1Þi ; tðnÞð1Þi ;mðnÞð1Þi ; Fð1Þi

n o
and

n
uð2Þi ;xð2Þi ; tðnÞð2Þi ;mðnÞð2Þi ;

Fð2Þi

o
. Let us apply the virtual work theorem (86) in the formsZ

V
rð1ÞðjiÞe

ð2Þ
ij � 2lð1Þi jð2Þi

� �
dV ¼

Z
S

tðnÞð1Þi uð2Þi dSþ
Z

S
mðnÞð1Þi xð2Þi dS

þ
Z

V
Fð1Þi uð2Þi dV ð158Þ

Z
V

rð2ÞðjiÞe
ð1Þ
ij � 2lð2Þi jð1Þi

� �
dV ¼

Z
S

tðnÞð2Þi uð1Þi dSþ
Z

S
mðnÞð2Þi xð1Þi dS

þ
Z

V
Fð2Þi uð1Þi dV ð159Þ

By using the general constitutive relations

rð1ÞðjiÞ ¼ Aijkle
ð1Þ
kl þ Cijkjð1Þk ð160Þ

lð1Þi ¼ �
1
2

Bijjð1Þj �
1
2

Ckjie
ð1Þ
kj ð161Þ

rð2ÞðjiÞ ¼ Aijkle
ð2Þ
kl þ Cijkjð2Þk ð162Þ

lð2Þi ¼ �
1
2

Bijjð2Þj �
1
2

Ckjie
ð2Þ
kj ð163Þ

it is seen that

rð1Þji eð2Þij �2lð1Þi jð2Þi ¼Aijkle
ð1Þ
kl eð2Þij þCijkjð1Þk eð2Þij þCkjie

ð1Þ
kj jð2Þi þBijjð1Þj jð2Þi

ð164Þ

rð2Þji eð1Þij � 2lð2Þi jð1Þi ¼ Aijkle
ð2Þ
kl eð1Þij þ Cijkjð2Þk eð1Þij þ Ckjie

ð2Þ
k þ Bijjð2Þj jð1Þi

ð165Þ

By using the symmetry relations (108)–(110) in (164) and (165), we
obtain

rð1Þji eð2Þij � 2lð1Þi jð2Þi ¼ rð2Þji eð1Þij � 2lð2Þi jð1Þi ð166Þ

which showsZ
V

rð1Þji eð2Þij � 2lð1Þi jð2Þi

� �
dV ¼

Z
V

rð2Þji eð1Þij � 2lð2Þi jð1Þi

� �
dV ð167Þ
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Therefore, the general reciprocal theorem for these two elastic solu-
tions is

Z
S

tðnÞð1Þi uð2Þi dSþ
Z

S
mðnÞð1Þi xð2Þi dSþ

Z
V

Fð1Þi uð2Þi dV

¼
Z

S
tðnÞð2Þi uð1Þi dSþ

Z
S

mðnÞð2Þi xð1Þi dSþ
Z

V
Fð2Þi uð1Þi dV ð168Þ
7. Two-dimensional infinitesimal linear isotropic elasticity
theory

In this section, we consider the two-dimensional infinitesimal
linear isotropic couple stress theory of elasticity. It is seen that
the results have similarity to the results of indeterminate couple
stress theory (Mindlin, 1963). We start this development by
assuming that the displacement components are two-dimensional,
where in cartesian coordinates

u1 ¼ uðx; yÞ; u2 ¼ vðx; yÞ; u3 ¼ 0 ð169a-cÞ

This is exactly the conditions for plane strain theory in Cauchy elas-
ticity. The non-zero components of strains are

exx ¼
ou
ox
; eyy ¼

ov
ox
; exy ¼

1
2

ou
oy
þ ov

ox

� 	
ð170a-cÞ

and the only non-zero rotation component is

x ¼ xz ¼ xyx ¼
1
2

ov
ox
� ou

oy

� 	
ð171Þ

Therefore, the components of the mean curvature vector are

jx ¼ �jyz ¼
1
2

ox
oy

; jy ¼ jxz ¼ �
1
2

ox
ox

ð172a;bÞ

It is seen that the compatibility equations for this case are

o2exx

oy2 þ
o2eyy

ox2 ¼ 2
o2exy

oxoy
ð173aÞ

ojyz

ox
¼ ojxz

oy
ð173bÞ

ox
ox
¼ oexy

ox
� oexx

oy
ð173cÞ

ox
oy
¼ oeyy

ox
� oexy

oy
ð173dÞ

Then, the corresponding couple-stress components can be written

lx ¼ �lyz ¼ �4g
ox
oy

; ly ¼ lxz ¼ 4g
ox
ox

ð174a;bÞ

while the skew-symmetric and symmetric force-stress components
are

r½xy� ¼ �2gr2x ð175aÞ

r½yx� ¼ 2gr2x ð175bÞ

rðxxÞ ¼
2l

1� 2m
ð1� mÞexx þ meyy
� �

ð176aÞ

rðyyÞ ¼
2l

1� 2m
mexx þ ð1� mÞeyy
� �

ð176bÞ

rðxyÞ ¼ 2lexy ð176cÞ
Finally, total force-stress components are given by

rxx ¼
2l

1� 2m
ð1� mÞexx þ meyy
� �

ð177aÞ

ryy ¼
2l

1� 2m
mexx þ ð1� mÞeyy
� �

ð177bÞ

rxy ¼ 2lexy � 2gr2x ð177cÞ

ryx ¼ 2lexy þ 2gr2x ð177dÞ
where

rxy þ ryx ¼ 4lexy ð177eÞ
Similarly to plane strain Cauchy elasticity, we have

rzz ¼ m rxx þ ryy
� �

ð177fÞ
When there is no body force, these stresses satisfy the equilibrium
equations

orxx

ox
þ oryx

oy
¼ 0 ð178aÞ

orxy

ox
þ oryy

oy
¼ 0 ð178bÞ

olxz

ox
þ

olyz

oy
þ rxy � ryx ¼ 0 ð178cÞ

To solve for stresses, we need to derive compatibility equations in
terms of stresses as follows. It is seen that

exx ¼
1

2l
ð1� mÞrxx � mryy
� �

ð179aÞ

eyy ¼
1

2l
ð1� mÞryy � mrxx
� �

ð179bÞ

2exy ¼
1

2l
ðrxy þ ryxÞ ð179cÞ

r2x ¼ 1
4g
ðryx � rxyÞ ð179dÞ

By inserting these in (173), we obtain the compatibility equations in
terms of the force and couple-stress tensors. Thus,

o2rxx

oy2 þ
o2ryy

ox2 � mr2 rxx þ ryy
� �

¼ o2

oxoy
ryx þ rxy
� �

ð180aÞ

olxz

oy
¼

olyz

ox
ð180bÞ

lxz ¼ l2 o

ox
ryx þ rxy
� �

� 2l2 o

oy
rxx � m rxx þ ryy

� �� �
ð180cÞ

lyz ¼ 2l2 o

ox
ryy � m rxx þ ryy

� �� �
� l2

o

oy
ryx þ rxy
� �

ð180dÞ

By combining these with the equilibrium equations, we obtain the
following full set of equations in terms of stresses

orxx

ox
þ oryx

oy
¼ 0 ð181aÞ

orxy

ox
þ oryy

oy
¼ 0 ð181bÞ

olxz

ox
þ

olyz

oy
þ rxy � ryx ¼ 0 ð181cÞ

r2 rxx þ ryy
� �

¼ 0 ð181dÞ

olxz

oy
¼

olyz

ox
ð181eÞ

lxz ¼ l2 o

ox
ryx þ rxy
� �

� 2l2 o

oy
rxx � m rxx þ ryy

� �� �
ð181fÞ

lyz ¼ 2l2 o

ox
ryy � m rxx þ ryy

� �� �
� l2

o

oy
ryx þ rxy
� �

ð181gÞ
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The equilibrium equations (181a-c) can be identically satisfied by
choosing the representations

rxx ¼
o2U
oy2 �

o2W
oxoy

ð182aÞ

ryy ¼
o2U
ox2 þ

o2W
oxoy

ð182bÞ

rxy ¼ �
o2U
oxoy

� o2W
oy2 ð182cÞ

ryx ¼ �
o2U
oxoy

þ o2W
ox2 ð182dÞ

lxz ¼
oW
ox

ð183aÞ

lyz ¼
oW
oy

ð183bÞ

where U = U(x,y) and W = W(x,y) are stress functions. While the
compatibility equation (181e) is self-satisfied, the compatibility
equations (181d), (181f) and (181g) reduce to

r2r2U ¼ 0 ð184Þ
o

ox
W� l2r2W
� �

¼ �2 1� mð Þl2 o

oy
r2U
� �

ð185Þ

o

oy
W� l2r2W
� �

¼ 2 1� mð Þl2 o

ox
r2U
� �

ð186Þ

Combining (185) and (186) by eliminating U, we obtain

r2W� l2r4W ¼ 0 ð187Þ

All these relations are exactly the equations derived by Mindlin
(1963). This shows that the solutions for two-dimensional cases
based on Mindlin’s development, such as stress concentration
relations for a plate with a circular hole, still can be used. How-
ever, we should notice that in Mindlin (1963), there are two
size-dependent constants g and g0, along with an indeterminacy
in the spherical part of couple-stress tensor. Based upon Mindlin,
the couple-stresses lxx, lyy and lzz are indeterminate, while lzx

and lzy are given by

lzx ¼
g0

g
lxz ¼ 4g0

ox
ox

ð188aÞ

lzy ¼
g0

g
lyz ¼ 4g0

ox
oy

ð188bÞ

In the present couple stress theory, we have only one single size-
dependent constant g and the couple-stress tensor is skew-
symmetric without indeterminacy. Interestingly, the relations
(188) become identical to those in the present theory, when we take
g0 = �g. Thus, we may solve the boundary value problem in an
identical manner to Mindlin (1963), but then evaluate the determi-
nate couple-stresses through a postprocessing operation.

More specifically, by comparing the relations (174) and (183),
we can see

lxz ¼ 4g
ox
ox
¼ oW

ox
ð189aÞ

lyz ¼ 4g
ox
oy
¼ oW

oy
ð189bÞ

Therefore, we can take

W ¼ 4gxþ c ð190Þ

where c is an arbitrary constant, which can be chosen as zero. If W is
zero (or constant), there are no couple-stress tensor components,
and the relations for the force-stress tensor reduce to the relations
in classical elasticity, where U is the Airy stress function.

For force and moment traction components, we have

tðnÞx ¼ rxxnx þ ryxny ð191aÞ
tðnÞy ¼ rxynx þ ryyny ð191bÞ
m ¼ mðnÞz ¼ lxznx þ lyzny ð191cÞ

which can be written in terms of stress functions as

tðnÞx ¼
oU
oy2 �

o2W
oxoy

 !
nx þ � o2U

oxoy
þ o2W

ox2

 !
ny ð192aÞ

tðnÞy ¼ � o2U
oxoy

� o2W
oy2

 !
nx þ

o2U
ox2 þ

o2W
oxoy

 !
ny ð192bÞ

m ¼ oW
ox

nx þ
oW
oy

ny ð192cÞ

If the location on the boundary contour in the x–y plane is specified
by the coordinate s in a positive sense, we have

nx ¼
dy
ds

ð193aÞ

ny ¼ �
dx
ds

ð193bÞ

Therefore

tðnÞx ¼
d
ds

oU
oy
� oW

ox

� 	
ð194aÞ

tðnÞy ¼ �
d
ds

oU
ox
þ oW

oy

� 	
ð194bÞ

m ¼ oW
on
¼ 4g

ox
on

ð194cÞ

In polar coordinates, the equilibrium equations become

orrr

or
þ 1

r
orhr

oh
þ rrr � rhh

r
¼ 0 ð195aÞ

orrh

or
þ 1

r
orhh

oh
þ rrh � rhr

r
¼ 0 ð195bÞ

olrz

or
þ 1

r
olhz

oh
þ lrz

r
þ rrh � rhr ¼ 0 ð195cÞ

while the strain-deformation relations are

err ¼
our

or
; ehh ¼

1
r

ur þ
ouh

oh

� 	
; erh ¼

1
2

1
r

our

oh
þ ouh

or
� uh

r

� 	
ð196a-cÞ

and the only non-zero rotation component is

x ¼ xz ¼ xrh ¼
1
2

ouh

or
þ uh

r
� 1

r
our

oh

� 	
ð197Þ

Therefore, the components of the mean curvature vector are

jr ¼ jzh ¼
1
2

1
r

ox
oh

; jh ¼ �jzr ¼ �
1
2

ox
or

ð198a;bÞ

The constitutive relations are

rrr ¼
2l

1� 2m
ð1� mÞerr þ mehh½ � ð199aÞ

rhh ¼
2l

1� 2m
merr þ ð1� mÞehh½ � ð199bÞ

rrh ¼ 2lerh � 2gr2x ð199cÞ

rhr ¼ 2lerh þ 2gr2x ð199dÞ

where

rrh þ rhr ¼ 4lerh ð199eÞ
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It is also seen that

rzz ¼ m rrr þ rhhð Þ ð199fÞ

In the polar coordinate case, stresses can be expressed in terms of
stress functions as

rrr ¼
1
r

oU
or
þ 1

r2

o2U

oh2 �
1
r

o2W
oroh

þ 1
r2

oW
oh

ð200aÞ

rhh ¼
o2U
or2 þ

1
r

o2W
oroh

� 1
r2

oW
oh

ð200bÞ

rrh ¼ �
1
r

o2U
oroh

þ 1
r2

oU
oh
� 1

r
oW
or
� 1

r2

o2W

oh2 ð200cÞ

rhr ¼ �
1
r

o2U
oroh

þ 1
r2

oU
oh
þ o2W

or2 ð200dÞ

lh ¼ lrz ¼
oW
or

ð201aÞ

� lr ¼ lhz ¼
1
r

oW
oh

ð201bÞ

where

r2r2U ¼ 0 ð202Þ
r2W� l2r4W ¼ 0 ð203Þ

and

o

or
W� l2r2W
� �

¼ �2 1� mð Þl2 1
r

o

oh
r2U
� �

ð204Þ

1
r

o

oh
W� l2r2W
� �

¼ 2 1� mð Þl2 o

or
r2U
� �

ð205Þ
8. Anti-plane deformation infinitesimal linear isotropic
elasticity theory

We assume the displacement components are

u1 ¼ 0; u2 ¼ 0; u3 ¼ wðx; yÞ ð206a-cÞ

These are exactly the conditions for anti-plane deformation in Cau-
chy elasticity. The non-zero components of strains are

ezx ¼
1
2

ow
ox

; ezy ¼
1
2

ow
oy

ð207a;bÞ

and the non-zero rotation components are

xx ¼
1
2

ow
oy

; xy ¼ �
1
2

ow
ox

ð208a;bÞ

Therefore, the only non-zero component of the mean curvature vec-
tor is

jz ¼ jyx ¼
1
2

oxy

ox
� oxx

oy

� 	
¼ �1

4
r2w ð209Þ

Then, the corresponding couple-stress component is given by

lz ¼ lyx ¼ 2gr2w ð210Þ

while the skew-symmetric and symmetric force-stress components
are

rðzxÞ ¼ l ow
ox

; rðzyÞ ¼ l ow
oy

ð211a;bÞ

r½xz� ¼ �
1
2

olz

ox
¼ �g

o

ox
r2w; r½yz� ¼ �

1
2

olz

oy
¼ �g

o

oy
r2w

ð211c;dÞ
Therefore

rxz ¼ l
ow
ox
� g

o

ox
r2w; rzx ¼ l

ow
ox
þ g

o

ox
r2w ð212a;bÞ

ryz ¼ l ow
oy
� g

o

oy
r2w; rzy ¼ l ow

oy
þ g

o

oy
r2w ð212c;dÞ

When there is no body force, these stresses satisfy the equilibrium
equation

orxz

ox
þ oryx

oy
¼ 0 ð213Þ

which in terms of displacement gives the single fourth order
equation

r2w� l2r2r2w ¼ 0 ð214Þ
For force and moment traction components on the boundary con-
tour in the x-y plane, we have

tðnÞz ¼ rxznx þ ryzny ¼ l o

on
ðw� l2r2wÞ ð215aÞ

mðnÞx ¼ lzny ¼ 2gr2wny ð215bÞ
mðnÞy ¼ �lznx ¼ �2gr2wny ð215cÞ

It is important to note that if the moment traction vector m(n) is
zero on the boundary, the solution reduces to the classical Cauchy
elasticity solution

r2w ¼ 0 ð216Þ

with

lz ¼ lyx ¼ 0 ð217aÞ

rzx ¼ rxz ¼ l ow
ox

ð217bÞ

ryz ¼ rzy ¼ l ow
oy

ð217cÞ

everywhere in the domain. However, specification of tangential
rotation xðsÞ ¼ � 1

2
ow
on as a geometrical boundary condition creates

couple-stresses in the body. In that case, the classical solution can-
not be used. As we mentioned, this essential boundary condition
cannot usually be specified in practice. Therefore, anti-plane defor-
mation usually follows the classical Cauchy elasticity.
9. Sample problems of isotropic elasticity

In this section, several problems in classical Cauchy elasticity
are reconsidered within the framework of the present infinitesimal
linear size-dependent theory. Koiter (1964) examined the first
three elementary problems in which classical deformations are as-
sumed. Some differences appear between his results and those ob-
tained from the present consistent theory. The fourth example is
more involved and requires solution to a boundary value problem.

9.1. Twist of a cylindrical bar

Consider the x3-axis of our coordinate system along the axis of a
cylindrical bar with constant cross section. We assume the dis-
placement components are in the form as in the classical theory
and examine the corresponding stress field in the couple stress
theory. The assumed displacement components are

u1 ¼ �hx2x3; u2 ¼ hx1x3; u3 ¼ 0 ð218a-cÞ

where h is the constant angle of twist per unit length. The non-zero
components of the strain tensor and rotation vector are

e13 ¼ �
1
2

hx2; e23 ¼
1
2

hx1 ð219a;bÞ



2508 A.R. Hadjesfandiari, G.F. Dargush / International Journal of Solids and Structures 48 (2011) 2496–2510
x1 ¼ x32 ¼ �
1
2

hx1; x2 ¼ x13 ¼ �
1
2

hx2; x3 ¼ x21 ¼ hx3

ð220a-cÞ
Interestingly, it is seen that the curvature vector vanishes

j ¼ 1
2
r�x ¼ 0 ð221Þ

Therefore, the force-stress distribution is the classical result

r13 ¼ �lhx2; r23 ¼ lhx1 ð222a;bÞ

and the twist of a cylindrical bar does not generate couple-stresses.
This is in contrast with the Koiter (1964) result, in which couple-
stresses appear.

9.2. Cylindrical bending of a flat plate

Consider a flat material plate of thickness h bent into a cylindri-
cal shell with generators parallel to the x3-axis. Let R denote the
radius of curvature of the middle plane x1x3 in the deformed con-
figuration. We assume the displacement components are similar
to those in Cauchy elasticity. Thus,

u1 ¼ �
1
R

x1x2; u2 ¼
1
2

1
R

x2
1 þ

1
2

m
1� m

1
R

x2
2; u3 ¼ 0 ð223a-cÞ

The non-zero components of the strain tensor, rotation vector and
mean curvature vector are

e11 ¼ �
1
R

x2; e22 ¼
m

1� m
1
R

x2 ð224a;bÞ

x3 ¼ x21 ¼
x1

R
ð225Þ

j31 ¼ �j2 ¼
1

2R
ð226Þ

Therefore, the non-zero force and couple-stresses are written as

r11 ¼ �
2l

1� m
x2

R
; r33 ¼ �

2lm
1� m

x2

R
ð227a;bÞ

l2 ¼ l13 ¼ �l31 ¼ 4
g
R

ð228Þ

Notice that unlike the previous example of twisting deformation,
bending does produce couple-stresses. This is due to the existence
of non-zero mean curvature.

9.3. Pure bending of a bar with rectangular cross-section

We take the x1-axis to coincide with the centerline of the rect-
angular beam and the other axes parallel to the sides of the cross
section of the beam. Let R denote the radius of curvature of the cen-
tral axis of the beam after bending in the x1x3-plane. We assume
the displacement components are the same as in the classical Cau-
chy elasticity theory as follows:

u1 ¼
1
R

x1x3; u2 ¼ �
m
R

x2x3; u3 ¼
m

2R
x2

2 � x2
3

� �
� 1

2R
x2

1 ð229a-cÞ

Then, the strains, rotations and mean curvatures can be written

e11 ¼
x3

R
; e22 ¼ e33 ¼ �

mx3

R
ð230a;bÞ

x1 ¼ x32 ¼
mx2

R
; x2 ¼ x13 ¼

x1

R
ð231a;bÞ

j1 ¼ j32 ¼
1
2
ðx3;2 �x2;3Þ ¼ 0 ð232aÞ

j2 ¼ j13 ¼
1
2
ðx1;3 �x3;1Þ ¼ 0 ð232bÞ

j3 ¼ j21 ¼
1
2
ðx2;1 �x1;2Þ ¼

1� m
2R

ð232cÞ
As a result, the non-zero force- and couple-stresses take the form

r11 ¼ 2lð1þ mÞ x3

R
ð233aÞ

l3 ¼ l21 ¼ �l12 ¼ �4g
1� m

R
ð233bÞ

Again, for this problem, we find non-zero mean curvature and cou-
ple-stresses.

9.4. Deformation of a plane ring

As a final example, we consider a plane ring, rigidly fixed on the
external circular boundary at r = b, under deformation due to a ri-
gid displacement of the internal circular boundary at r = a with
magnitude U in the x1 direction. For the displacement components
in polar coordinates at r = a, we have

ur ¼ U cos h ð234aÞ
uh ¼ �U sin h ð234bÞ

The appropriate stress functions for this problem are

U ¼ A2

r
þ A3r3 þ A4r ln r


 �
cos hþ A5rh sin h ð235Þ

W ¼ 4ll2x ¼ B1r þ B2

r
þ B3I1

r
l

� �
þ B4K1

r
l

� �
 �
sin h ð236Þ

where In and Kn are the modified Bessel functions of first and second
kind of order n, respectively. The eight constants A2, A3, A4, A5, B1, B2,
B3 and B4 are to be determined. From (201) and (200), for couple-
and force- stresses, we have

lrz¼lh

¼ B1�
B2

r2 þB3
1
l

I0
r
l

� �
�1

r
I1

r
l

� �
 �
�B4

1
l

K0
r
l

� �
þ1

r
K1

r
l

� �
 �� 
sinh

ð237aÞ

lhz ¼ �lr ¼ B1 þ
B2

r2 þ B3
1
r

I1
r
l

� �
þ B4

1
r

K1
r
l

� �
 �
cos h ð237bÞ

rrr ¼
� 2A2

r3 þ 2A3r þ A4
r þ

2A5
r þ

2B2
r3

�B3
1
lr I0

r
l

� �
� 2

r2 I1
r
l

� �� �
þ B4

1
lr K0

r
l

� �
þ 2

r2 K1
r
l

� �� �
( )

cos h

ð237cÞ

rhh ¼
2A2
r3 þ 6A3r þ A4

r �
2B2
r3

þB3
1
lr I0

r
l

� �
� 2

r2 I1
r
l

� �� �
� B4

1
lr K0

r
l

� �
þ 2

r2 K1
r
l

� �� �
( )

cos h

ð237dÞ

rrh ¼
� 2A2

r3 þ 2A3r þ A4
r þ

2B2
r3

�B3
1
lr I0

r
l

� �
� 2

r2 I1
r
l

� �� �
þ B4

1
lr K0

r
l

� �
þ 2

r2 K1
r
l

� �� �
( )

sin h

ð237eÞ

rhr ¼
� 2A2

r3 þ 2A3r þ A4
r þ

2B2
r3 þ B3

1
l2

I1
r
l

� �
� 1

lr I0
r
l

� �
þ 2

r2 I1
r
l

� �h i
þB4

1
l2

K1
r
l

� �
þ 1

lr K0
r
l

� �
þ 2

r2 K1
r
l

� �h i
8><
>:

9>=
>; sin h

ð237fÞ

By using (237e) and (237f) in (199e), we obtain

4lerh¼
�4A2

r3 þ4A3rþ2A4
r þ

4B2
r3 þB3

1
l2

I1
r
l

� �
� 2

lr I0
r
l

� �
þ 4

r2 I1
r
l

� �h i
þB4

1
l2

K1
r
l

� �
þ 2

lr K0
r
l

� �
þ 4

r2 K1
r
l

� �h i
8><
>:

9>=
>;sinh

ð238Þ
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By using (199a-b) to obtain strains and then (196), we obtain the
displacement components

2lur¼
A1þA2

r2þð1�4mÞA3r2þð1�2mÞA4 lnrþ2ð1�mÞA5 lnr

�B2
r2�B3

1
r I1

r
l

� �
�B4

1
r K1

r
l

� �
" #

cosh

ð239aÞ

2luh ¼
�A1 þ A2

r2 þ ð5� 4mÞA3r2

þð1� 2mÞA4ð1� ln rÞ � 2½mþ ð1� mÞ ln r�A5

� B2
r2 þ B3

1
l I0

r
l

� �
� 1

r I1
r
l

� �� �
� B4

1
l K0

r
l

� �
þ 1

r K1
r
l

� �� �
8><
>:

9>=
>; sin h

ð239bÞ

where the additional terms involving A1 account for rigid-body
translation of the ring in the x1 direction. By using the displacement
components from (239) in (196c) and (197), we obtain alternative
expressions for erh and x

4lerh ¼

� 4A2
r3 þ 4A3r � 2ð1�2mÞA4

r � 2ð1�2mÞA5
r

þ 4B2
r3 þ B3

1
l2

I1
r
l

� �
� 2

lr I0
r
l

� �
þ 4

r2 I1
r
l

� �h i
þB4

1
l2

K1
r
l

� �
þ 2

lr K0
r
l

� �
þ 4

r2 K1
r
l

� �h i

8>>><
>>>:

9>>>=
>>>;

sin h ð240Þ
4lx ¼ 16ð1� mÞA3r � 2
A5

r
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After comparing (240) with (238) and (241) with (236), we obtain
the constraint equations among coefficients

A4 ¼ �
1� 2m

2ð1� mÞA5 ð242aÞ

B1 ¼ 16ð1� mÞl2A3 ð242bÞ
B2 ¼ �2l2A5 ð242cÞ

Therefore, it is seen that
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lrz ¼ lh ¼
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Similarly, for lhz, rrr, rhh, rrh and rhr, we can write expressions that
involve only the six coefficients A1, A2, A3, A5, B3 and B4.

We have the following six boundary conditions. At r = a

ur ¼ U cos h; uh ¼ �U sin h; m ¼ �lrz ¼ 0 ð244a-cÞ

and at r = b,

ur ¼ 0; uh ¼ 0; m ¼ lrz ¼ 0 ð244d-fÞ

Notice that we have taken the moment traction m to vanish on the
whole boundary, which is consistent with the usual reality. Using
the boundary conditions (244), we can obtain the six unknown
coefficients to complete the solution.
10. Conclusion

By considering further the consequences of the kinematics of a
continuum, definition of admissible boundary conditions and the
principle of virtual work, we find that couple stress theory can
be formulated as a practical theory without any ambiguity. In the
resulting theory, independent body couples cannot be specified
in the volume and surface moments can only exist in the tangent
plane at each boundary point. As a consequence, the couple-stress
tensor is found to be skew-symmetric and energetically conjugate
to the mean curvature tensor, which also is skew-symmetrical.
This is a general result, independent of material properties, which
makes size-dependent continuum mechanics possible.

For infinitesimal or small deformation linear elasticity, we can
write constitutive relations for all of the components of the force-
stress and couple-stress tensors. The most general anisotropic
elastic material is described by 45 independent constitutive coeffi-
cients. This includes six coefficients relating mean curvatures to
couple-stresses and 18 coefficients relating strain and mean curva-
tures to couple-stresses and the symmetric part of force-stresses,
respectively. At the other extreme, for isotropic materials, the
two Lamé parameters and one length scale completely characterize
the behavior. In addition, stored energy relations, along with
uniqueness and reciprocal theorems, have been developed for
linear elasticity. General formulations for two-dimensional and
anti-plane problems are also elucidated for the isotropic case. The
former employs a pair of stress functions, as introduced previously
by Mindlin for the indeterminate theory. Finally, several elemen-
tary problems are examined within the context of small deforma-
tion elasticity, along with a more complicated boundary value
problem.

The present theory provides a fundamental basis for the devel-
opment of consistent scale-dependent material response from a
continuum mechanics view. Additional aspects of the linear elastic
theory, including fundamental solutions and computational
mechanics formulations, will be addressed in forthcoming work.
Beyond this, the present theory should be useful for the develop-
ment of nonlinear elastic, elastoplastic, viscoplastic and damage
mechanics formulations that may govern the behavior of solid con-
tinua at the smallest scales.
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