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By relying on the definition of admissible boundary conditions, the principle of virtual work and some
kinematical considerations, we establish the skew-symmetric character of the couple-stress tensor in
size-dependent continuum representations of matter. This fundamental result, which is independent of
the material behavior, resolves all difficulties in developing a consistent couple stress theory. We then
develop the corresponding size-dependent theory of small deformations in elastic bodies, including
the energy and constitutive relations, displacement formulations, the uniqueness theorem for the corre-
sponding boundary value problem and the reciprocal theorem for linear elasticity theory. Next, we con-
sider the more restrictive case of isotropic materials and present general solutions for two-dimensional
problems based on stress functions and for problems of anti-plane deformation. Finally, we examine sev-
eral boundary value problems within this consistent size-dependent theory of elasticity.
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1. Introduction

Classical continuum mechanics is an approximation based on
the assumption that matter is continuously distributed throughout
the body. This theory provides a reasonable basis for analyzing the
behavior of materials at the macro-scale, where the microstructure
size-dependency can be neglected. Experiments show, however,
that the mechanical behavior of materials in small scales is differ-
ent from their behavior at macro-scales. Any attempt to drop the
continuity assumption in a modified theory is bound to make the
analysis extremely difficult and computationally intensive. There-
fore, we need to develop a consistent size-dependent continuum
mechanics, which accounts for the microstructure of materials.
This theory must span many scales and, of course, reduce to clas-
sical continuum mechanics for macro-scale size problems.

New measures of deformation, which are length related, such as
the curvature tensor, are needed in a more complete continuum
theory. As a consequence, such a theory will also require the intro-
duction of couple-stresses. The existence of couple-stress in mate-
rials was originally postulated by Voigt (1887). However, Cosserat
and Cosserat (1909) were the first to develop a mathematical
model to analyze materials with couple-stresses. In the original
Cosserat theory, the kinematical quantities were the displacement
and a material microrotation, hypothesized to be independent of
the continuum mechanical rotation. This latter quantity, which
may be called the macrorotation, is the usual rotation vector
defined as one half of the curl of the displacement field.
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A couple stress theory, using macrorotation as the true
kinematical rotation, was developed much later by Toupin
(1962), Mindlin and Tiersten (1962), Koiter (1964), and others for
elastic bodies. In these developments, the gradient of the rotation
vector is used as a curvature tensor. Unfortunately, there are some
difficulties with these formulations. Perhaps the most disturbing
troubles are the indeterminacy of the spherical part of the
couple-stress tensor and the appearance of the body couple in
the constitutive relation for the force-stress tensor (Mindlin and
Tiersten, 1962). This inconsistent theory is called the indetermi-
nate couple stress theory in the literature (Eringen, 1968). As a re-
sult of the inconsistency, a number of alternative theories have
been developed.

One branch revives the idea of microrotation, inherited from
Cosserat and Cosserat (1909) and is called micropolar theories
(e.g., Mindlin, 1964; Eringen, 1968; Nowacki, 1986; Chen and
Wang, 2001). However, microrotation, which brings extraneous
degrees of freedom, is not a proper continuum mechanical concept.
How can the effect of the discontinuous microstructure of matter
be represented mathematically by an artificial continuous microro-
tation? Thus, a consistent size-dependent continuum mechanics
theory should involve only true continuum kinematical quantities
without recourse to any additional artificial degrees of freedom.

The other main branch, labeled second gradient theories, avoids
the idea of microrotation by introducing gradients of strain, rota-
tion or various combinations thereof (e.g., Mindlin and Eshel,
1968; Yang et al,, 2002; Lazar et al., 2005). Although these theories
use true continuum representations of deformation, the resulting
formulations are not consistent with proper boundary condition
specifications and energy conjugacy within the principle of virtual
work.
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Here we develop the consistent couple stress theory by consid-
ering true continuum kinematical displacement and rotation. We
demonstrate that the couple-stress tensor is skew-symmetric and
the skew-symmetric part of the gradient of the rotation tensor is
the consistent curvature tensor. These two tensors satisfy pair con-
jugacy in the virtual work principle. Although the gradient of the
strain tensor might appear in the skew-symmetric force-stress
constitutive relations, it is not a fundamental measure of deforma-
tion. For example, in elastic bodies, strain gradients do not appear
in the stored energy density function.

Interestingly, this theory can be considered as the modification
of the developments of Mindlin and Tiersten (1962) and Koiter
(1964). We will see that some results from the previous indetermi-
nate couple stress theory for two dimensional cases can still be used.

We organize the current paper in the following manner. In Sec-
tion 2, we present force-stresses, couple-stresses and the equilib-
rium equations per the usual definitions in the existing couple
stress literature. Based on purely kinematical considerations as
provided in Section 3, we first suggest the mean curvature tensor
as the measure of deformation compatible with the couple-stress
tensor for the infinitesimal theory. Then, by using the virtual work
principle in Section 4, we demonstrate that in couple stress mate-
rials, body couples must be transformed to an equivalent body
force and surface traction system. More importantly, based on
resolving properly the boundary conditions, we show that the
couple-stress tensor is skew-symmetric and, thus, completely
determinate. This also confirms the mean curvature tensor as the
fundamental deformation measure, energetically conjugate to the
couple-stress tensor. Afterwards, in Section 5, the general theory
of small deformation elasticity is developed. The constitutive and
equilibrium equations for a linear elastic material also are derived
under the assumption of infinitesimal deformations in Section 6,
along with the uniqueness theorem for well-posed boundary value
problems and the reciprocal theorem. Section 7 provides the
general solution based on stress functions for two-dimensional
infinitesimal linear elasticity, while the corresponding anti-plane
deformation problem is examined in Section 8. Section 9 presents
solutions for several elementary elasticity problems and one more
complicated case. Finally, Section 10 contains a summary and some
general conclusions.

2. Stresses and equilibrium

Consider a material continuum occupying a volume V bounded
by a surface S as the current configuration. For a size dependent
continuum theory, it is assumed that the transfer of the interaction
in the current configuration occurs between two particles of the
body through a surface element dS with unit normal vector n; by
means of a force vector tg")dS and a moment vector mf")dS, where
™ and m\" are force- and moment-traction vectors. Surface forces
and couples are then represented by generally non-symmetric
force-stress gj; and couple-stress f; tensors, where

t" = oy, (1)
mgn) = Kl 2)

The force- and couple- stress tensors can be generally decomposed
into symmetric and skew-symmetric parts

ji = 04jj) + O 3)
Wi = Wiy + Ky (4)
Notice that here we have introduced parentheses surrounding a
pair of indices to denote the symmetric part of a second order ten-

sor, whereas square brackets are associated with the skew-symmet-
ric part.

Now consider an arbitrary part of the material continuum occu-
pying a volume V, enclosed by boundary surface S,. Under quasi-
static conditions, the linear and angular balance equations for
this part of the body are

/ t"dS+ [ Fdv =0 (5)
Sa Va

/S |:8,‘ijjfl(<n) + mg”)] ds + / [Siijj Fy + CJ dvV=0 (6)
Jsq Jva

where F; and C; are the body force and the body couple per unit vol-
ume of the body, respectively. Here & is the permutation tensor or
Levi-Civita symbol.

By using the relations (1) and (2), along with the divergence
theorem, and noticing the arbitrariness of volume V,, we finally ob-
tain the differential form of the equilibrium equations, for the
usual couple stress theory, as
ojij +Fi=0 (7)
Hjij =+ &0 + =0 (8)
where the comma denotes differentiation with respect to the spa-
tial coordinates.

In classical continuum mechanics ;=0 and C;= 0. Therefore,
angular equilibrium (8) shows that the force-stress tensor is
symmetric

0ji = 0 = 0, 0 =0 (9a,b)
This means that the tensor oj; has six independent components and
we have three linear equilibrium equations in (7). In the classical
theory, the extra three equations are obtained by developing consti-
tutive relations.

In a couple stress theory, the tensors o and y; have 18 compo-
nents altogether, but we have only six equilibrium equations.
Therefore, it seems we need 12 extra equations from constitutive
relations. This has been the main trouble in developing a consistent
couple stress theory in the past. Similarly to the classical case, we
should expect that the angular equilibrium equation (8) will fur-
nish some insight into the subtle structure of stresses in a contin-
uum. This will reduce the number of independent components of
stresses from 18. We explore this by studying the boundary condi-
tions, virtual work principle and some kinematical considerations
and discover the skew-symmetric character of the couple-stress
tensor in continuum representations of matter. We consider the
kinematical aspects in the following section.

3. Kinematics

Here we consider the kinematics of a continuum under the
assumptions of infinitesimal deformation. In Cartesian coordinates,
we define u; to represent the displacement field of the continuum
material. Consider the neighboring points P and Q with position
vectors x; and x; + dx; in the reference configuration. The relative
displacement of point Q with respect to P is

du,‘ = U,'J'de (10)

where u;; is the displacement gradient tensor at point P. As we
know, although this tensor is important in analysis of deformation,
it is not itself a suitable measure of deformation. This tensor can be
decomposed into symmetric and skew-symmetric parts

Ujj = €jj + Wy (11)
where
1
ey = Uy = (thy + i) (12)
1
Wy = U = 5 (Ui — ) (13)
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Of course, in (12) and (13), the tensors e; and w; are the small
deformation strain and rotation tensor, respectively. The rotation
vector w; dual to the rotation tensor wj; is defined by

1 1
Wi = 5 &k Wi = 5 Eijellej (14a)
which in vectorial form is written
= %V X u (14b)

Alternatively, this rotation vector is related to the rotation tensor
through

ji = &jjk Wy (15)

which shows

W) = —Wy3, Wy =W13, W3=—W1 (16a-c)
Therefore, the relative displacement is decomposed into

du; = du” + du” (17)
where

dul" = ejdx; (18)
dul® = wydx; (19)

Then, wj is seen to generate a rigid-like rotation of element dx;
about point P, where

duPdx; = wydxidx; = 0 (20)

Since w;; does not contribute to the elongation or contraction of ele-
ment dx;, it cannot appear in a tensor measuring material stretches.
Therefore, as we know, the symmetric strain tensor e; is the suit-
able measure of deformation in classical infinitesimal theories, such
as Cauchy elasticity.

In couple stress theory, we expect to have an additional tensor
measuring the curvature of the arbitrary fiber element dx;. To find
this tensor, we consider the field of rotation vector w;. The relative
rotation of two neighboring points P and Q is given by

d(,l),' = CL),"jClXj (21 )

where the tensor w;; is the gradient of the rotation vector at point P.
It is seen that the components w1 1, w,> and ws 3 represent the tor-
sion of the fibers along corresponding coordinate directions x;, x»
and x3, respectively, at point P. The off-diagonal components repre-
sent the curvature of these fibers in planes parallel to coordinate
planes. For example, w, is the curvature of a fiber element in
the x, direction in a plane parallel to the x,x3; plane, while w,; is
the curvature of a fiber element in the x; direction in a plane paral-
lel to the x;x3 plane.

The suitable measure of curvature must be a tensor measur-
ing pure curvature of an arbitrary element dx;. Therefore, in this
tensor, the components w;;, @, and @33 cannot appear.
However, simply deleting these components from the tensor
w;j does not produce a tensor. Consequently, we expect that
the required tensor is the skew-symmetric part of w;;. By
decomposing the tensor w;; into symmetric and skew-symmetric
parts, we obtain

Wij = Yy + Kij (22)
where
1
2y = Oy =5 (@4 + @) (23)
1
Ky = g =5 (@i — @) (24)

The symmetric tensor y; results from applying the strain operator
to the rotation vector, while the tensor «; is the rotation of the rota-
tion vector at point P. From (23)

A1 =M1, Jop = W22, Y33 = W33 (25a-c)

and
1

Y12 = X1 = 5 (W12 + @21) (26a)
1

Yoz = Jz2 = 5 (W23 + W32) (26b)
1

Y13 = Xz = 5 (W13 + w31) (26¢)

The diagonal elements 11, x22 and yx33 defined in (25) represent
pure torsion of fibers along the x1, x, and x5 directions, respectively,
as mentioned above. On the other hand, from careful examination
of (26), we find that y5, x23 and ;3 measure the deviation from
sphericity (Hamilton, 1866) of deforming planes parallel to x;x,,
X>X3 and x,x3, respectively. Furthermore, we may recognize that this
symmetric y; tensor must have real principal values, representing
the pure twists along the principal directions. Thus, we refer to y;
as the torsion tensor and we expect that this tensor will not contrib-
ute as a fundamental measure of deformation in a continuum mate-
rial. Instead, we anticipate that the fundamental curvature tensor is
the skew-symmetric rotation of rotation tensor ;. This will be con-
firmed in the next section through consideration of couple-stresses
and virtual work.

We also may arrive at this outcome by noticing that only the
part of dw; that is normal to element dx; produces pure curvature.
Therefore, by decomposing dw; into

do; = do” + do® (27)
where

do! = y,dx; (28)
do® = K;dx; (29)
we notice

do®dx; = Kjdxdx; = 0 (30)

This shows that da)gz) is the component of dw; normal to dx;. There-
fore, the tensor x;; seems to be the suitable curvature tensor, which
is represented by

0 Ki2 K13
(K] = | —Ki2 0 K (31)
—Ki3 —Kp 0

where the non-zero components of this tensor are

1
Ki2 = =K1 =

) (012 — 0271) (32a)
1
K23 = —K33 = 5(602.3 — 32) (32b)
K13 = —K31 = 2(601.3 —31) (32¢)

Now we may recognize that xi,, k3, and k3 are the mean curva-
tures of planes parallel to the x;x,, XoX3, x3x; planes, respectively,
at point P after deformation. Therefore, the skew-symmetric tensor
Kk will be referred to as the mean curvature tensor or simply the
curvature tensor. The curvature vector x; dual to this tensor is de-
fined by

1

1
Ki = jgijkwk.j = jgﬁk’c"j (33)
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Thus, this axial vector is related to the mean curvature tensor

through

Kji = &ijkKi (34)
which shows
K1 =—Ky, Ky=Ki3, K3=—Ki2 (35a-c)
It is seen that the mean curvature vector can be expressed as

x:%wa (36)

This shows that k is the rotation of the rotation vector, which can
also be expressed as

1 1 1,
xszx(qu)fé—lV(V-u)—ZVu (37a)
1 1 1 1
Ki = Uik = g Uikk = g Ukki = szui (37b)
From (37b) and (13), we can obtain the interesting relation
1
Ki = i(l)j,’_j (37(:)

What we have presented here is applicable to small deformation
theory, which requires the components of the strain tensor and
mean curvature vector to be infinitesimal. These conditions can
be written as

leg| < 1 (38)

1
[Ki| < i (39)

where [s is the smallest characteristic length in the body.

While analogous measures of strain and curvature can be ob-
tained for finite deformation theory, this would take us beyond
the scope of the present work, which is directed toward the infin-
itesimal linear couple stress theory.

4. Principle of virtual work and its consequences for continua

Once again consider the material continuum occupying a vol-
ume V bounded by a surface S. The standard form of the equilib-
rium equations for this medium was given in (7) and (8). Let us
multiply (7) by a virtual displacement éu; and integrate over the
volume and also multiply (8) by the corresponding virtual rotation
J w;, where

. 1
ow; = j 8U1<0ukj (40)
and integrate this over the volume as well. Therefore, we have
v
/ (,uji,j =+ EijkOjk + Ci) ow;dV =0 (42)
v

By noticing the relation

0jijou; = (0;i0U;) ; — 0idUi (43)
and using the divergence theorem, the relation (41) becomes

/V Gy dV — /5 £ su,dS + /V FioudV. (44)

Similarly, by using the relation

uj,»_jéwf -+ SijkO'jk(S(Di = (uﬁéa)i)J — ,uﬁo‘a)u — ajkéwjk (45)

Equation (42) becomes
/V H00;;dV — /V oidwdV = /S m{"™ sadS + /V CidwdV (46)
Then, by adding (44) and (46), we obtain
//ujiéwinV+/‘/aji((5uiJféwij)dv

- /5 £ ou;dS + /V FioudV + /5 m" swidS + /V CiowdV — (47)

However, by noticing the relation
561] = 51,11'_]' — 5601']' (48)

for compatible virtual displacement, we obtain the virtual work
theorem as

/inéeijdv+/uji5w,~jdV:/ tﬁ”)éuidsjt/ml@")éwids
v Vv S S
+/F,»6uidv+/ci5widv (49)
v 14

Since de;; is symmetric, we also have
Gj,-ée,j = O'O‘,‘)éeij (50)

Thus, the principle of virtual work can be written as
/ (701)5(?[](1‘/ + / ,uﬁéwijdv = / tl@”)éuids +/ m?”)é(,(),'ds
Vv Vv S S
+ / FioudV + / Cidw;dV (51)
14 v

Theright hand side of (51) shows that the boundary conditions on the
surface of the body can be either vectors u; and w; as essential (geo-
metrical) boundary conditions, or t" and m{" as natural (mechani-
cal) boundary conditions. The left hand side of (51) shows that o ;s
and e;; are energy conjugate tensors, and the skew symmetric part
of force-stress tensor o ;; has no contribution to internal virtual work.
At this point, it is also seen that p;; and w;; are energy conjugate ten-
sors. Therefore, the compatible curvature tensor must be developed
from w;. The virtual work principle (51) shows that there is no room
for strain gradients as fundamental measures of deformation in a
consistent couple stress theory. Interestingly, (51) can reveal more
insight about the structure of this consistent couple stress theory.

Now, along those lines, we investigate the fundamental charac-
ter of the body couple G; and couple-stress y;; in a continuum. It is
seen that the term

/ C,‘(SCOjdV (52)
Vv
in (51) is the only term in the volume that involves éw;. However,

dw; is not independent of du; in the volume, because we have the
relation

1
5(,01' = is,jkéukj (53)
Therefore, by using (53) in the integrand of (52), we find
- 1 X 1 - 1
Ciow; = EC,*&jkbukJ =5 (Sijkciauk)_j - i&'jkci.jéuk (54)

and, after applying the divergence theorem, the body couple virtual
work in (52) becomes

/ Ciow;dV = / %sijka_jéu,»dV + / %sijkano‘uids (55)
Vv Vv S
which means that the body couple C; transforms into an equivalent

body force %s,-jka j in the volume and a force traction vector %eijijnk
on the bounding surface. This shows that in a continuum theory of
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materials, the body couple is not distinguishable from the body
force. Therefore, in couple stress theory, we must only consider
body forces. This is analogous to the impossibility of distinguishing
a distributed moment load in Euler-Bernoulli beam theory, in
which the moment load must be replaced by the equivalent distrib-
uted force load and end concentrated loads. Therefore, for a proper
couple stress theory, the equilibrium equations become

ojij+Fi=0 (56)
Wij + i T = 0 (57)
where
F+%VXC—>F inV (58a)
t" 4 %C xn—t" onS$ (58b)
and the virtual work theorem reduces to
/ o jiyoe;dV + / H;00;;dV = / t" ou;dS +/ m{"” scdS

v Jv Js s

\%

Next, we investigate the fundamental character of the couple-stress
tensor based on boundary conditions.

As we mentioned, the prescribed boundary conditions on the
surface of the body can be either vectors u; and w; or t"and
m{", which makes a total number of six boundary values for either
case. However, this is in contrast to the number of geometric
boundary conditions that can be imposed (Koiter, 1964). In partic-
ular, if components of u; are specified on the boundary surface,
then the normal component of the rotation w; corresponding to
twisting

a),gn) = 0"n; = o, (60)
where
o™ = wyny (61)

cannot be prescribed independently. However, the tangential com-
ponent of rotation w; corresponding to bending, that is

a){ns)

" = o — 0"™n; = ; — o (62)

may be specified in addition, and the number of geometric or essen-
tial boundary conditions that can be specified is therefore five.

Next, we let m™ and m{™ represent the normal and tangential
components of the surface moment traction vector m,?"), respec-
tively, where

m™ = m,in)nk = ,ujininj (63)
causes twisting, while
m™ =m" — mmn; (64)

is responsible for bending.

From kinematics, since ™ is not an independent generalized
degree of freedom, its apparent corresponding generalized force
must be zero. Thus, for the normal component of the surface mo-

ment traction vector m\"”, we must enforce the condition
m™ =m®n, = ;nn; =0 onS$ (65)

Furthermore, the boundary moment surface virtual work in (55)
becomes

/ m"” sc;dS = / m™ scdS = / m™sw™ ds (66)
S S S

This shows that a material in couple stress theory does not support
independent distributions of normal surface moment (or twisting)

traction m™, and the number of mechanical boundary conditions
also is five. In practice, it might seem that a given m™™ has to be re-
placed by an equivalent shear stress and force system. Koiter (1964)
gives the detail analogous to the Kirchhoff bending theory of plates.
However, we should realize that there is a difference between cou-
ple stress theory and the Kirchhoff bending theory of plates. Plate
theory is an approximation for elasticity, which is a continuum
mechanics theory. However, couple stress theory is a continuum
mechanics theory itself without any approximation.

From the above discussion, we should realize that on the sur-
face of the body, a normal moment m™ cannot be applied. By
continuing this line of reasoning, we may reveal the subtle charac-
ter of the couple-stress tensor. First, we notice that the virtual
work theorem can be written for every arbitrary volume V, with
surface S, within the body V. Thus
/ GjiéeijdV+/ ,uﬁéa),-_jdv = tg”)éuidS—&-

Va Va Sa Sa
+ Fiou;dV (67)

Va
For any point on this arbitrary surface with unit normal n;, we must
have

m™ = pnin; =0 inV (68)

Since n;n; is symmetric and arbitrary in (68), ;; must be skew-sym-
metric. Thus

Wi =—4; inV (69)

This is the fundamental property of the couple-stress tensor in con-
tinuum mechanics, which has not been recognized previously. Here
we can see the crucial role of the virtual work theorem in this result.

In terms of components, the couple-stress tensor now can be
written as

m"” sc;dS

0 Wy Mo
(W] = | —ty 0 iy (70)
—li3 —Hy O

and one can realize that the couple-stress actually can be consid-
ered as an axial vector. This couple-stress vector y; dual to the ten-
sor u;; can be defined by

W= %Sijk:ukj (71)
where we also have

Sijk e = Hji (72)
These relations simply show

Uy = —Uys,  Hy = Hy3, U3 = —lUyp (73a-¢)

It is seen that the surface moment traction vector can be expressed
as

mgn) = Wil = &l Ly, (74)
which can be written in vectorial form
m" =nx p (75)

This obviously shows that the moment traction vector m™ is tan-
gent to the surface.

After discovering the skew-symmetric character of couple-
stress tensor u;, we investigate the structure of the force-stress
tensor ¢j;. Using (72), the angular equilibrium equation (57) can
be expressed as

Eijk (,u,q- + ajk> =0 (76)
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which indicates that p;+ oj, is symmetric. Therefore, its skew-
symmetric part vanishes and

Oy = — My = —% (:uij - :ujj) (77)

which produces the skew-symmetric part of the force-stress tensor
in terms of the couple-stress vector. Therefore, the sole duty of the
angular equilibrium equation (57) is to produce the skew-symmetric
part of the force-stress tensor. This relation can be elaborated if we
consider the axial vector s; dual to the skew-symmetric part of the
force-stress tensor oy, where

Si= %&'jk(f Ik (78)
which also satisfies

EijeSk = i (79)
or simply

Sy =—0p3, S2=0pn3, S$3=—0q7 (80a-c)

By using (77) in (78), we obtain

1 1
$i = =5 Gkl = 5 Giklhj (81a)
which can be written in vectorial form
s = %V X | (81b)

This simply shows that half of the curl of the couple-stress vector u
produces the skew-symmetric part of the force-stress tensor
through s. Interestingly, it is seen that

V-s=0 (82)
Returning to the virtual work theorem, we notice since ; is skew-
symmetric

W0 Qij = ;0K (83)

which shows that the skew-symmetric mean curvature tensor i is
energetically conjugate to the skew-symmetric couple-stress tensor
;. This confirms our speculation of x;; as a suitable curvature ten-
sor in Section 2. Furthermore, the virtual work theorem (59)
becomes

/0‘0‘,‘)59,’jd‘/+ / ujiékijdvz/ £ oudS + /m§“)13wid5
14 JV S JS
+/F,-6u1-dV (84)
Vv

Interestingly, by using the dual vectors of these tensors, we have

Hi0Kij = EijpHyEjigdiq = —EijpLijg by 0Kq = —20pg Uy 0Kq
= 72,[11»(3K,' (85)

which shows the conjugate relation between twice the mean curva-
ture vector —2k; and the couple-stress vector y;. Thus, the principle
of virtual work can be written

/V(O'U,-)(Se,-j—2ui5Ki)dV:/Stl(”)éuidS—q—/smE")éwidS
+ / FioudV (86)
JV

Now it is time to explain a very important aspect of specifying
boundary conditions. The natural and essential boundary conditions
t;") and u;, respectively, are specified as in classical Cauchy theory.
On the other hand, the two new boundary conditions for couple
stress theory need more elaboration. In practice, the actual bound-
ary S is usually free of moment traction, which means this natural

boundary condition is zero (mf”) = 0) everywhere on S. However,
couple-stresses p;; can be created inside the volume V and non-zero
m§") may exist on any arbitrary internal surface S,. The essential
boundary condition, which is the tangential component of w;, usu-
ally cannot be specified on the actual boundary S, but once again
non-zero couple-stresses ; can be generated inside the domain V.

What we have presented so far is a continuum mechanics the-
ory of couple stress materials, independent of the material proper-
ties. We have shown that the actual number of independent
components of stresses are 9 components of o(;; and y; and the
linear equilibrium equation (56) reduces to

[Gui) - #[U]L +Fi=0 (87)

Thus, we have nine stress components and three linear equilibrium
equations. The six extra required equations are obtained from con-
stitutive relations. In the following section, we specialize the theory
for elastic materials.

5. Infinitesimal size-dependent elasticity

Now, we develop the size-dependent theory of small deforma-
tion for elastic materials. In an elastic material, there is a stored
elastic energy density function W, where for arbitrary virtual
deformations about the equilibrium position, we have

oW = Gj,-ée,-j + ,ujiISK,'j = O'(,-,-)ée,-j — 2/11(3161' (88)

Therefore, W is a positive definite function of the symmetric strain
tensor e; and the mean curvature vector ;. Thus

W =W(e k) =Wy, ki) (89)

However, for a variational analysis, the relation (88) should be writ-
ten as

oW = 00;‘)(511,‘_1' — 2/,(1-(51(,' (90)

where the all components of éu;; and dx; can be taken independent
of each other. From the relations (89) and (90), we obtain

oW
O-(ii) = Wl] (91 )
ow

Ul = ——— 2

=g (92)
However, it is seen that

ow o oW dey
3w, ~ deq duy (93)
By noticing

1

e = 3 (uk.l + ul,k) (94)
we obtain

oey 1
Ay =5 (SxiSy5 + S1iy) (95)
Therefore

ow 1ow . .
u; 2 dew (3idy + 01idg) (96)
which shows

ow 1 /oW aw
;2 (50, ) o
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Then
1 /oW oW
w =3 (5e, *ca,) o9
1 oW
= —= 99
==33 (99)
If we further agree to construct W, such that
ow oW
we can write in place of (98)
ow
O-(ii) = aieu (10])
It is also seen that
1 1| /oW ow
Hij) =5 (Mu - Nj,i) ==z {(6161)] - <ach> J (102)

Therefore, for the skew-symmetric part of the force-stress tensor,
we have

1| /oW ow
Tl = —Hij = g {(ak.)] - (67) J (103)
Finally, we obtain the constitutive relations as
1 /W aw 1|(/oW ow
=3 (5 o) 2 {(a—m-)j i (a—xj),i] o4
10W
Hi=—5 o (105)

The total potential energy functional for an elastic body is defined
as

{u} = / wav — / Faudv — / tMudS — / m” wdS
v v S S

It can be easily shown that this functional attains a minimum
when the displacement field corresponds to the elastic solution
that satisfies the equilibrium equations. The kinematics of defor-
mation and variation of (106) reveal an important character of
the stored energy density function W. We know there are two sets
of equilibrium equations (56) and (57) corresponding to linear and
angular equilibrium of an infinitesimal element of material. There-
fore, the geometrical boundary conditions are the displacement u;
and rotation w; as we discussed previously. As we showed in Sec-
tion 4, continuum mechanics supports the geometrical boundary
conditions u; and cuf””, and their corresponding energy conjugate
mechanical boundary conditions ¢t and m{". Consequently, there
is no other possible type of boundary condition in size-dependent
continuum mechanics. Therefore, in the variation of the total po-
tential energy Il in (106), the stored energy density function W
at most can be in the form (89). This means at most the stored en-
ergy density function W is a function of the second derivative of
deformation in the form of the mean curvature vector k; not
strain gradient. In other words, the continuum mechanics stored
energy function W cannot depend on third and higher order deriv-
atives of deformation.

(106)

6. Infinitesimal size-dependent linear elasticity
6.1. Strain energy and constitutive relations
For a linear elastic material, based on our development, the

quadratic positive definite stored energy density must be in the
general form

W(e k)= %A,-jklei,-ekl + %B,‘jKl‘Kj + Cijkeink
The tensors Ay, B and Gy contain the elastic constitutive coeffi-
cients and are such that W is positive definite. As a result, tensors
Ajjiu and By are positive definite. The tensor Ay is actually equiva-
lent to its corresponding tensor in Cauchy elasticity. The symmetry
relations

(107)

Aijit = Auij = Ajia (108)
Bjj = Bji (109)
Cije = Ciik (110)

show that for the most general case the number of distinct compo-
nents for Ay , B and Gy are 21, 6 and 18, respectively. Therefore,
the most general linear elastic anisotropic material is described
by 45 independent constitutive coefficients.

It is seen that the couple-stress vector and symmetric part of
force-stress tensor can be found as

1 1
yi:—EBUKj—EC,{ﬁekj (111)
iy = Ajwen + K (112)
Additionally, we find that

1 1
,LL,-J- = *iBime‘i *ickmiekm.j (]13)
and the skew-symmetric part of this tensor is
Hiiy = —0iji

1 1 1 1
= — ZBf,nij + ‘_lBjme'i - chmiekm.j + Z Ckmjekmj (] 14)

Therefore, for the force-stresses, we find

1 1 1 1
0ji = Ajren + CiKi + ZBim Kmj — ZBjm Kmi + 4 Cikmi€kmj — 2 Cimj€rkm,i
(115)

It is seen that the strain gradient does appear in the skew-symmet-
ric part of the force-stress tensor. However, the strain gradient can-
not be considered as a fundamental measure of deformation,
because it does not appear directly in the stored energy density
(107).

For an isotropic material, the symmetry relations require

Aijkl = },5,]'5’(1 + ,Llé,'kéﬂ + ,uéﬂéjk (116)
Bj = 1615; (117)
Cix=0 (118)

The moduli /1 and p have the same meaning as the Lamé constants
for an isotropic material in Cauchy elasticity. It is seen that only one
extra material constant 7 accounts for couple stress effects in an
isotropic material and the stored energy becomes

1
Wi(e k)= j)h(ekk)z + ueje; + SNKiK;

with the following restrictions on elastic constants for positive def-
inite stored energy

(119)

324+2u>0, u>0, >0 (120)
Then, the constitutive relations can be written

i = —8ni; (121)
0jiy = A8y + 2 ejj (122)
Interestingly, it is seen that for an isotropic material
Vepu=p;=0 (123)
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By using the relation
1 1

Ki= 2 Up ki — Zui,kk (124)
we obtain

;=21 (Vu; = U (125a)
or in vectorial form

B=21 [Vzu V(Y- u)] (125b)
Additionally,

g = 2n(V7uis = s ) (126)
Therefore,

Py =NV (Wij — 1) (127)
or

Hij = 2V (128)
and we obtain

i = =My = 2NV (129)
or by exchanging indices

o = 21V 0y (130)

Recall that the axial vector s; is dual to oy, as shown in (78). Then,
from (81a) and (121), s; can be written in terms of the curvature
vector as

Si = —ANEjK (131)
Therefore, the constitutive relation for vector s is

S=—-4nV x Kk (132a)
which can be written alternatively as

s=-2nV xVxo=21V’e (132b)
or

s=-nNVxVxVxu (132¢)

This remarkable result shows that in an isotropic material the
vector s, corresponding to the skew-symmetric part of the stress
tensor, is proportional to the curl of the curl of the curl of the dis-
placement vector u.

By using the relations (122) and (129), the total force-stress ten-
sor can be written as

Oji = Jewdij + 2 e + 2NV wji (133)
We also notice that
i = —8nKji = 4n(wij — w;;) (134)

which is more useful than y; in practice.

It is seen that these relations are similar to those in the indeter-
minate couple stress theory (Mindlin and Tiersten, 1962; Koiter,
1964), when 5’ = —5. Here we have derived the couple stress the-
ory for materials in which all former troubles with indeterminacy
disappear. There is no spherical indeterminacy and the second cou-
ple stress coefficient #’ depends on 7, such that the couple-stress
tensor becomes skew-symmetric.

Interestingly, the ratio

%: P (135)

specifies a characteristic material length I, which is absent in
Cauchy elasticity, but is fundamental to small deformation couple

stress elasticity. We realize that this is the characteristic length in
an elastic material and that Is — [ in (39). Thus, the requirements

for small deformation elasticity are
lejl < 1 (136a)

K| <<17 (136b)

6.2. Displacement formulations

When the force-stress tensor (115) is written in terms of dis-
placements, as follows

1 1 1 1
0ji = Ajuex + Cijkki + 2 Cimi€kmj — chmjekm.i + ZBim Kmj — ZBjm Kmi
1 1 1
= Ayl + 2 Cijk <um‘mk - Vv? Uk) +2 Cimillimj — 2 CimjUi mi
1 1
+ EBik <um.mkj - Vzﬂk.j) - EBjk <um‘mki - Vzﬂk.f) (137)

and is carried into the linear equilibrium equation (56), we obtain

1 1 1
Ajjiallij + chk <um.mjk - Vzukj) + chmivz Ukm = 4 CrmjUie mij

1 1
+ EB{){ (Vzum,mk — Vzvzuk) — EBjk (um,mkij — VZUk,,‘j) +F =0
(138)
For an isotropic material, the force-stress tensor becomes

gji = )\.ekk(sij + 2,ue,-j — 21’[V260U

= Mtypdy + Uiy + i) — NV Uiy — ;) (139)
and for the linear equilibrium equation, we have
<A+u+nvz)uk‘ki+ (,uan2>V2u,»+F,» -0 (140a)
which can be written in the vectorial form
<A+M+J1V2)V(V-u)+ (,ufnvz)vzu+F:0 (140b)
This relation can also be written as
(/1+2,u)V(V~u)—(,u—nvz)Vxqu—i-F:O (141)

which was derived previously by Mindlin and Tiersten (1962) with-
in the context of the indeterminate couple stress theory. However,
recall that the Mindlin-Tiersten formulation involved two couple
stress parameters 7 and #'. In hindsight, the fact that #’ does not ap-
pear in (141) should have been an indication that this coefficient is
not independent of #. We now know that ' = —#.

The general solution for the displacement in isotropic elasticity
also has been derived by Mindlin and Tiersten (1962) in terms of a
vector function G and scalar function Gg as
u:G—IZVV-G—ﬁV[r-(1—12V2)G+Go] (142)
where v = W is the Poisson’s ratio. These functions satisfy the
relations

u(1 =PV VG = —F
MVZG() =r-F

(143a)
(143b)

These functions reduce to the Papkovich functions in the classical
theory, when [ = 0. In general, it is easily seen that

o 1-2v 22
v-ufm@—lv)v.c (144a)
20=Vxu=VxG (144b)
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6.3. Uniqueness theorem for boundary value problems

Now we investigate the uniqueness of the linear size-dependent
elasticity boundary value problem. The proof follows from the con-
cept of stored energy, similar to the approach for Cauchy elasticity.
By replacing the virtual deformation with the actual deformation
in the virtual work theorem (86), we obtain

/(O'U,-)e,-jfZ,uiK,-)dV:/t,@")uid5+/mﬁ")wideL/Fiu,'dV
v S S 14

(145)
Using the constitutive relations (111) and (112), we have
0 ji€jj — 2,LllK1 = ukleijekl -+ BinjKj + ZC,‘jkel‘ij = ZW(E, K) (146)
Therefore, (145) can be written as
2/de / uds+/m<”wds+/Fudv (147)

This relation gives twice the total stored energy in terms of the
work of external body forces and surface tractions.

Now, we consider the general boundary value problem. The pre-
scribed boundary conditions on the surface of the body can be any
well-posed combination of vectors u; and w;, t” and m{" as
discussed on Section 4. Assume that there exist two different solu-

tions {u?” ef}”,x( .”,,ul”} and { , ff),Kfz ,0;,-2)7.“5%} to the
same problem with identical body forces and boundary conditions.

Thus, we have the equilibrium equations

o) +Fi =0 (148)
ol = ~Hi (149)
where

w_ _lp o 1o 150
Hiw = =5 bk =5 ki€ (150a)
i) = Ajuey + Citcy” (150b)
and the superscript (¥ references the solutions (! and .

Let us now define the difference solution
u = u® —u (151a)

/ 2 1
e, =e —ejl) (151b)
K=Kk — KV (151c)
=0y —ay (151d)
= - (151e)
Since the solutions {u“)7ef]),;c, Lol ! } and {ufz el k? g,

,u,@)} correspond to the same body forces and boundary conditions,

the difference solution must satisfy the equilibrium equations

0;;=0 (152)
Ol = ~Hiy (133)
with zero corresponding boundary conditions. Consequently, twice
the total strain energy (147) for the difference solution is

/ WAV — / (Al + By, + 2Cieiy )V = 0 (154)

Since the stored energy density of the difference solution W' is non-
negative, this relation requires
2W' = Ajuejey, + Bijkik; + 2Cejic, =0 in V (155)

However, the tensors Ajj and Bj; are positive definite and the tensor
Gij is such that the energy W' is non-negative. Therefore the strain,

curvature and associated stresses for the difference solution must
vanish

e;=0, k=0, 0;=0, W= (156a-d)

These require that the difference displacement u} can be at most a
rigid body motion. However, if displacement is specified on part
of the boundary such that rigid body motion is prevented, then
the difference displacement vanishes everywhere and we have

ult =ul? (157a)
el = esz) (157b)
K = (157¢)
ajl” = a<2> (157d)
w! = p? (157e)

Therefore, the solution to the boundary value problem is unique.
On the other hand, if only force and moment tractions are
specified over the entire boundary, then the displacement is not
unique and is determined only up to an arbitrary rigid body
motion.

6.4. Reciprocal theorem

We derive now the general reciprocal theorem for the equilib-
rium states of a linear elastic material under different applied
loads. Consider two sets of equilibrium states of compatible elastic

solutions {u}”, M tmm, m§”><”,F§”} and {”52)7 0@, £ @)
<2)}_ Let us apply the virtual work theorem (86) in the forms

/V(aw —2uM 2)a!v /

dS+/m \?ds

+ / Fhu®dv (158)
Vv
[ (oe) ~2u?uM)av = [ Pulas [ m o
14
+ / FPuMav (159)
14
By using the general constitutive relations
ol = Ajuey + Gty (160)
1 1
' =~ 5By — 5 Cugely (161)
) = Ajuey + Ciptey? (162)
1 1
#52) = — ijjK;Z) - jij,-e,(qz.) (163)

it is seen that
1 2 1 2 1 2 1 2
=Ajuey' ey + Ciuicy el + Cugiely 12 + Byre) i

(164)

(1),-(2)
=244 K

2 1 2 1 2 2 1
= Ajuely e}l + Cyicell) + Cgie? + Byrc il

(165)

By using the symmetry relations (108)-(110) in (164) and (165), we
obtain

(2) ,(1) (2),.(1)
gjep — 217K

(1) 5(2) (1,.2) _ ~(2),(1) (2),.(1)
Oj e — 2l KT =050e — 217K (166)
which shows
/( e _ 2 ph ,z)dvz/ (o€l —2uM)av (167)
v v
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Therefore, the general reciprocal theorem for these two elastic solu-
tions is

/ £ VuPds + / m"Vew®ds + / Flu?dv
JS JS JV

= / W@y ds 4 / m"@ 1 ds + / FOuldv (168)
S S 14

7. Two-dimensional infinitesimal linear isotropic elasticity
theory

In this section, we consider the two-dimensional infinitesimal
linear isotropic couple stress theory of elasticity. It is seen that
the results have similarity to the results of indeterminate couple
stress theory (Mindlin, 1963). We start this development by
assuming that the displacement components are two-dimensional,
where in cartesian coordinates
u; =ulx,y), u;=v(xy), u3=0 (169a-c)
This is exactly the conditions for plane strain theory in Cauchy elas-
ticity. The non-zero components of strains are

ou ov 1/0u ov
6”267’ eyy:&, xyzi(@+&> (170a-c)
and the only non-zero rotation component is
1/0v ou

Therefore, the components of the mean curvature vector are

10w low

T aey M TReET TR

Ky = — (172a,b)

It is seen that the compatibility equations for this case are

2 2 2
ey ey ey

a2 | ax2 T oxdy (1733)
My Oy

= W (173b)
0w ey Oew
o X oy (173¢)
oo _%y Dy (173d)

By~ ox oy

Then, the corresponding couple-stress components can be written

0w 0w
Wy = 7Auyz = 7411@ :uy = Uy, = 417& (174ab)

while the skew-symmetric and symmetric force-stress components
are

Ty = 2NV’ (175a)

Oy =20V (175b)
2y

Ow) =125y (1= v)ex + vey] (176a)
2

O = 1 [Vem + (1= ey (176b)

Oixy) = 2Ueyy (176¢)

Finally, total force-stress components are given by
2u

Y [(1—Vv)exw + vey] (177a)
2

Gy = % [Vew + (1 - V)ey)] (177b)
Oy = 2Miey, — 21V (177¢)
Oyx = 2liey + 20V 0 (177d)
where

Oy + Oy = 4Ly (177e)
Similarly to plane strain Cauchy elasticity, we have

Oy = V(O + Oyy) (177f)

When there is no body force, these stresses satisfy the equilibrium
equations

00xx  00yx
X y 0 (178a)
00xy 00y
x Ty - 0 (178b)
G
Ol , Oy | Oy — Oy =0 (178c)

ox oy

To solve for stresses, we need to derive compatibility equations in
terms of stresses as follows. It is seen that

G = 2]—” [(1=V)0x — VO] (179a)
ey = 21—# [(1=V)ayy — Vo] (179b)
2ey = ﬁ (Oxy + Oyx) (179¢)
Vi = 41—’1(6},)( — Oyy) (179d)

By inserting these in (173), we obtain the compatibility equations in
terms of the force and couple-stress tensors. Thus,

oy o ) 2
ayzxx + axivy — VWV (Ou + Oyy) = oxdy (O + Ox) (180a)
0
@GL;Z - % (180b)
2 0 2 0
Ly, =1 o (O + Oxy) — 21 > [Oxx — V(0 + Oyy) ] (180c)
U =2122[a —V(ow+0o )]—lzi(a + Oy) (180d)
yz ax yy XX yy ay X Xy

By combining these with the equilibrium equations, we obtain the
following full set of equations in terms of stresses

00 00y

L (181a)

ag—xxy ag—yyyzo (181b)
d

%+ é‘;uoxy—oy,(:o (181¢)

V2 (0 + Gyy) =0 (181d)
d

@aL;z: gf (181e)
2 0 2 0

My =1 &(ny +Oyy) — 21 3y [Ox = V(O + Tyy)] (181f)
2 0 2 0

My, =21 &[O’yy*"(axx+°'yy)] -1 @(%*ny) (181g)
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The equilibrium equations (181a-c) can be identically satisfied by
choosing the representations

O :227(5—% (182a)
Oyy = aasz +% (182b)
axy:—g—s—% (182¢)
Oy = —gi—af,+§7f (182d)
“, = % (183a)
W, = % (183b)

where @ = &(x,y) and ¥ = ¥(x,y) are stress functions. While the
compatibility equation (181e) is self-satisfied, the compatibility
equations (181d), (181f) and (181g) reduce to

ViVie =0 (184)
0 22w 20 (2

§<*P71 v lp) = —2(1-)l @(V <1>) (185)
0 2<2 o 2 0 2

@(qf—lv lP>72(l—v)l &(v qs) (186)
Combining (185) and (186) by eliminating &, we obtain

VY - PV =0 (187)

All these relations are exactly the equations derived by Mindlin
(1963). This shows that the solutions for two-dimensional cases
based on Mindlin’s development, such as stress concentration
relations for a plate with a circular hole, still can be used. How-
ever, we should notice that in Mindlin (1963), there are two
size-dependent constants # and #’, along with an indeterminacy
in the spherical part of couple-stress tensor. Based upon Mindlin,
the couple-stresses (i, (M, and p,, are indeterminate, while
and u,, are given by

B ﬂ/ )

luzx - 7] luxz - 417 aX (1883)
. E/ 00

luzy - n :uyz - 4’7 ay (]Sgb)

In the present couple stress theory, we have only one single size-
dependent constant # and the couple-stress tensor is skew-
symmetric without indeterminacy. Interestingly, the relations
(188) become identical to those in the present theory, when we take
1’ = —n. Thus, we may solve the boundary value problem in an
identical manner to Mindlin (1963), but then evaluate the determi-
nate couple-stresses through a postprocessing operation.

More specifically, by comparing the relations (174) and (183),
we can see

ow oY
Wy, = ’7&=§ (189&)
o oY
1, = 4,7@ - > (189b)
Therefore, we can take
Y =4nw+c (190)

where c is an arbitrary constant, which can be chosen as zero. If ¥ is
zero (or constant), there are no couple-stress tensor components,

and the relations for the force-stress tensor reduce to the relations
in classical elasticity, where @ is the Airy stress function.
For force and moment traction components, we have

tI) = Gty + Opelly (191a)
t = Gyn, + ayyn, (191b)
m= m;n) = My, Tx + :uyzny (191C)
which can be written in terms of stress functions as
op  *Y *o vy
) — [ 2= _ 2~ I R
b <6y2 axay> Mt ( ax6y+ o ) (1923)
P Py *d *Y
m) — [ 2% = 7 D T
by ( dxdy ay2>nx + <ax2 +axay My (192b)
oY oY
m_&nﬁ@ny (192c¢)

If the location on the boundary contour in the x-y plane is specified
by the coordinate s in a positive sense, we have

ny = % (193a)
n, = f% (193b)
Therefore

£ — % (% _ g) (194a)
t;“) = f% <% + %) (194b)
m:%zéma@% (194c)
In polar coordinates, the equilibrium equations become

aair" % ag(;” In_In_o (195a)
agr’“ % %’" In_%r_o (195b)
U LW By =0 (195¢0)

while the strain-deformation relations are

ou 1 ou 1/10u, ouy, u
er =— eee:;<ur+ "), ertﬂ:*( r+—”——">

or’ 20 2\r o0 "or r
(196a-c)
and the only non-zero rotation component is
_ _ o 1 Uy Uy 1 ou,
w*”l*“’f”*i(ﬁ*?‘?@) (197)

Therefore, the components of the mean curvature vector are
110w 10w
=570 KOZ*Ker*jﬁ (198a,b)

The constitutive relations are

Kr = Kz

O = ]i—“ZV [(1 = V)en + veg) (199a)
Oy = ]3—#2‘} [ver + (1 — v)eg) (199b)
Gro = 2er — 20V (199¢)
Gor = 21 + 21V @ (199d)
where

O + Oor = 4ler (199e)
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It is also seen that
Oz = V(O + Ow) (199f)

In the polar coordinate case, stresses can be expressed in terms of
stress functions as

100 10*® 108°% 10%
Cr =T TR Torae o0 (200)
*0 1P 10%
T =5 T Y o0 2 a0 (2000)
190 100 103¢ 1Y
T Y0 o0 rar ot (200c)
10°0 1030 Y
Ow =7 om0t 7o o (2000
oY
:u(l = :urz = ﬁ (201&)
10%
— M = Hy = F % (201b)
where
VV2e =0 (202)
VY - PVAY =0 (203)
and
0 2oy 210 /)
a@f—lv Y/>7—2(1—v)17@(v qb) (204)
10 22y _ 20 (2
?@(Y’—IVIP>72(1—V)I§(V¢) (205)
8. Anti-plane deformation infinitesimal linear isotropic
elasticity theory
We assume the displacement components are
u =0, uy;=0, us=w(x,y) (206a-c)

These are exactly the conditions for anti-plane deformation in Cau-
chy elasticity. The non-zero components of strains are

1 ow 1 ow
ey = 3 ey = 2%y (207a,b)
and the non-zero rotation components are

1ow 1 ow
a)x:ia7 wy:—ia (208a/b)

Therefore, the only non-zero component of the mean curvature vec-
tor is

10wy owx\ 1,
Then, the corresponding couple-stress component is given by
o = [y = 20V W (210)

while the skew-symmetric and symmetric force-stress components
are

ow ow
Oy = Ky 0(zy):,u@ (211a,b)
o lop, 0, 1o, 0 2
O =3 = MV W =35 = Ty V

Therefore
w0 SIS VL

e naXVw, azxf,uax+nawa (212a,b)
w3, WD,

0y, = ,u@ n@V W, Oy=U % +116yV w (212¢,d)

When there is no body force, these stresses satisfy the equilibrium
equation

00, 00,
o =0 (213)

which in terms of displacement gives the single fourth order
equation

Viw - PVViw =0 (214)

For force and moment traction components on the boundary con-
tour in the x-y plane, we have

tl = Gy + Oy = N% (w— PVPw) (215a)
m{" = p,n, = 2nV>wn, (215b)
m{" = —p,n, = —2nV>wn, (215¢)

It is important to note that if the moment traction vector m™ is
zero on the boundary, the solution reduces to the classical Cauchy
elasticity solution

Viw =0 (216)

with

1, = fhy, =0 (217a)
ow

Oz = Oxz = ,ua (2]7]3)
ow

Oy, =0y = ,u@ (217c¢)

everywhere in the domain. However, specification of tangential
rotation w® = —12¥ 35 3 geometrical boundary condition creates
couple-stresses in the body. In that case, the classical solution can-
not be used. As we mentioned, this essential boundary condition
cannot usually be specified in practice. Therefore, anti-plane defor-
mation usually follows the classical Cauchy elasticity.

9. Sample problems of isotropic elasticity

In this section, several problems in classical Cauchy elasticity
are reconsidered within the framework of the present infinitesimal
linear size-dependent theory. Koiter (1964) examined the first
three elementary problems in which classical deformations are as-
sumed. Some differences appear between his results and those ob-
tained from the present consistent theory. The fourth example is
more involved and requires solution to a boundary value problem.

9.1. Twist of a cylindrical bar

Consider the xs3-axis of our coordinate system along the axis of a
cylindrical bar with constant cross section. We assume the dis-
placement components are in the form as in the classical theory
and examine the corresponding stress field in the couple stress
theory. The assumed displacement components are

Uy = —0XoX3, Uy = 0X1X3, U3 =0 (218a-c)

where 0 is the constant angle of twist per unit length. The non-zero
components of the strain tensor and rotation vector are

1 1
e;3=—50x, ex =§9X1

5 (219a,b)
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W) = W3 = o1 = 0X3
(220a-c)

Interestingly, it is seen that the curvature vector vanishes

1
W13 =—50X2, W3=

1
—_Z0 =
0x1, @y 5

2

x:%wa:O (221)
Therefore, the force-stress distribution is the classical result
(222a,b)
and the twist of a cylindrical bar does not generate couple-stresses.
This is in contrast with the Koiter (1964) result, in which couple-
stresses appear.

013 = — 10Xy, O3 = UOX,

9.2. Cylindrical bending of a flat plate

Consider a flat material plate of thickness h bent into a cylindri-
cal shell with generators parallel to the x3-axis. Let R denote the
radius of curvature of the middle plane x;x3 in the deformed con-
figuration. We assume the displacement components are similar
to those in Cauchy elasticity. Thus,

1 11 2+ 1 v 1 2,
= TRM R E s RN TR TR
The non-zero components of the strain tensor, rotation vector and
mean curvature vector are

u; =0 (223a-c)

v 1, (224a.,b)

€11 = —5X2, €xn=-—
R 1-vR

N |
W3 =Wy = R (225)
K31 = =K = 7R (226)
Therefore, the non-zero force and couple-stresses are written as
O 2U X 2wy x
TMETT R PP TTIOOR (227a,b)
X | 228
Hy = 3 M3 R (228)

Notice that unlike the previous example of twisting deformation,
bending does produce couple-stresses. This is due to the existence
of non-zero mean curvature.

9.3. Pure bending of a bar with rectangular cross-section

We take the x;-axis to coincide with the centerline of the rect-
angular beam and the other axes parallel to the sides of the cross
section of the beam. Let R denote the radius of curvature of the cen-
tral axis of the beam after bending in the x;x3-plane. We assume
the displacement components are the same as in the classical Cau-
chy elasticity theory as follows:

1 v v 1
U = pXiXs, Up == pXoXs, Us=op (x5 —x3) — 2Rx] (229a-¢)
Then, the strains, rotations and mean curvatures can be written
X I ]

e = R’ €y = €33 = R (2308,]3)
VX; X

o =mp="p. my=03=Y (231a,b)
1

K1 =Kz = i(wlz — (1)2‘3) =0 (2323.)
1

Ky =Ki3 = 5(601,3 —w31)=0 (232b)
1 1-v

K3 =Ky = j(wz,l —W12) = SR (232c¢)

As a result, the non-zero force- and couple-stresses take the form

o1 =2u(1+v) (233a)

X3
R
Uy =y =~y =

1—v

(233b)

Again, for this problem, we find non-zero mean curvature and cou-
ple-stresses.

9.4. Deformation of a plane ring

As a final example, we consider a plane ring, rigidly fixed on the
external circular boundary at r = b, under deformation due to a ri-
gid displacement of the internal circular boundary at r=a with
magnitude U in the x; direction. For the displacement components
in polar coordinates at r = a, we have

u, =Ucosd (234a)

Uy =-Usin0 (234Db)

The appropriate stress functions for this problem are

&= {%+A3r3 +A4rlnr} cos 0 + Asrsin 0 (235)

¥ = 4ulow = Br+@+31(5)+31< (f) sing (236)
=4l = |D1 = shi\y 4817

where I, and K,, are the modified Bessel functions of first and second
kind of order n, respectively. The eight constants A,, As, A4, As, By, Bo,
B3 and B, are to be determined. From (201) and (200), for couple-
and force- stresses, we have

Uy = [y
B B, 1. /m 1 /r 1 rn 1 r .
= {Bl b [7’0 (1) +h (i)] B {TKO (7) 7K (7)} }5‘“9
(237a)
B 1 1
Ly, = —t, = {Bl +7§+B3?11 G) + By K G)} cos 0 (237b)
2A2+2A r+A4+2A5+2B2
Oy = { . }cosH
=Bs[iiIo(5) =511 ()] + Bali: Ko () + 3 K1 (7))
(237¢)

22 4 2Asr + 4 1+ 22

2 4 BAsr % 2B
Opp = {
1 T 2 T Sine
=Bs[ilo(}) — 511 ()] +Ba[Ko(f) + 3K (7)]
(237e)

cos 0
+Bs[1o(}) —r—zh (T” = Ba[iKo()) + ZKq (7)] }
(237d)
O = {
~ 22 2yt + 8+ 22 4 By [} (5) — 1 ho() + 311 ()]
O = sin6

+Ba[1K () + Ko (§) + Kq (9]

(237f)

By using (237e) and (237f) in (199e), we obtain
4"2+4A3r+2/‘4+4"2+33[ Li(5) —#1o()

+By [3K1 (5) +2Ko (}) + £K1 (7)]

+Ah()]

4uen= sind

(238)
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By using (199a-b) to obtain strains and then (196), we obtain the
displacement components

Av+%+(1-4v)Asr? + (1-2v)AyInr+2(1—v)AsInr
= C

2uu = 0s6
T s mn g Bk )
(239a)
—A1 +% + (5 - 4v)Asr?
2uuy =< +(1 =2v)A4(1 —Inr) = 2[v+ (1 — v)InT1]As sin g

54 Ba[11o() — 1 ()] - Bafl o)) + 1K )
(239b)

where the additional terms involving A; account for rigid-body
translation of the ring in the x; direction. By using the displacement
components from (239) in (196¢) and (197), we obtain alternative
expressions for e,y and w

_ 4% 4 4Asr — 2(1—r2v)A4 _ 2(173@,45

apeyy = { + B +Ba[Eh ()~ 2ho() + A1 ()] Ysino (240)
BalFK () + o ) + K4 (1)
dpw = {16(1 VAT — 2’% + 3311211 G) n 341121@ G) sino
(241)

After comparing (240) with (238) and (241) with (236), we obtain
the constraint equations among coefficients

1-2v
Av=—571" i V)AS (242a)
By = 16(1 — v)I°As (242b)
B, = —2I°As (242c)
Therefore, it is seen that
2y = A1 + %+ (1 —4v)Asr? + As [23(1’1‘11) Inr+ %2] cosd
=B3 3 (}) - BazKi ()
(243a)
—4v)Inr 2
oy = T B (5 - s — A5 [Pt 2] sin o
+Bs[Ho()) = +1 ()] — Ba[i Ko (}) + 1K ()]
(243Db)
_WE 22
He, = 0{16(11 vzlA31+ riAS TRA(D) 1 (T }sin()
+Bs[11o(7) — +11 ()] — Ba[1Ko(f) + 1K1 (7)]
(243¢)

Similarly, for uq,, 6, 049, 01 and o, we can write expressions that
involve only the six coefficients Aj, Ay, A3, As, B3 and By.
We have the following six boundary conditions. At r=a

u-=Ucos0, u,=-Usind, m=-pu,=0 (244a-c)
and at r=b,
u=0, u=0, m=p,=0 (244d-f)

Notice that we have taken the moment traction m to vanish on the
whole boundary, which is consistent with the usual reality. Using
the boundary conditions (244), we can obtain the six unknown
coefficients to complete the solution.

10. Conclusion

By considering further the consequences of the kinematics of a
continuum, definition of admissible boundary conditions and the
principle of virtual work, we find that couple stress theory can
be formulated as a practical theory without any ambiguity. In the
resulting theory, independent body couples cannot be specified
in the volume and surface moments can only exist in the tangent
plane at each boundary point. As a consequence, the couple-stress
tensor is found to be skew-symmetric and energetically conjugate
to the mean curvature tensor, which also is skew-symmetrical.
This is a general result, independent of material properties, which
makes size-dependent continuum mechanics possible.

For infinitesimal or small deformation linear elasticity, we can
write constitutive relations for all of the components of the force-
stress and couple-stress tensors. The most general anisotropic
elastic material is described by 45 independent constitutive coeffi-
cients. This includes six coefficients relating mean curvatures to
couple-stresses and 18 coefficients relating strain and mean curva-
tures to couple-stresses and the symmetric part of force-stresses,
respectively. At the other extreme, for isotropic materials, the
two Lamé parameters and one length scale completely characterize
the behavior. In addition, stored energy relations, along with
uniqueness and reciprocal theorems, have been developed for
linear elasticity. General formulations for two-dimensional and
anti-plane problems are also elucidated for the isotropic case. The
former employs a pair of stress functions, as introduced previously
by Mindlin for the indeterminate theory. Finally, several elemen-
tary problems are examined within the context of small deforma-
tion elasticity, along with a more complicated boundary value
problem.

The present theory provides a fundamental basis for the devel-
opment of consistent scale-dependent material response from a
continuum mechanics view. Additional aspects of the linear elastic
theory, including fundamental solutions and computational
mechanics formulations, will be addressed in forthcoming work.
Beyond this, the present theory should be useful for the develop-
ment of nonlinear elastic, elastoplastic, viscoplastic and damage
mechanics formulations that may govern the behavior of solid con-
tinua at the smallest scales.
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