5 research outputs found

    Multiscale medial shape-based analysis of image objects

    Get PDF
    pre-printMedial representation of a three-dimensional (3-D) object or an ensemble of 3-D objects involves capturing the object interior as a locus of medial atoms, each atom being two vectors of equal length joined at the tail at the medial point. Medial representation has a variety of beneficial properties, among the most important of which are 1) its inherent geometry, provides an object-intrinsic coordinate system and thus provides correspondence between instances of the object in and near the object(s); 2) it captures the object interior and is, thus, very suitable for deformation; and 3) it provides the basis for an intuitive object-based multiscale sequence leading to efficiency of segmentation algorithms and trainability of statistical characterizations with limited training sets. As a result of these properties, medial representation is particularly suitable for the following image analysis tasks; how each operates will be described and will be illustrated by results: 1) segmentation of objects and object complexes via deformable models; 2) segmentation of tubular trees, e.g., of blood vessels, by following height ridges of measures of fit of medial atoms to target images; 3) object-based image registration via medial loci of such blood vessel trees; 4) statistical characterization of shape differences between control and pathological classes of structures. These analysis tasks are made possible by a new form of medial representation called m-reps, which is described

    A method and software for segmentation of anatomic object ensembles by deformable m-reps: Deformable M-Reps

    Get PDF
    Deformable shape models (DSMs) comprise a general approach that shows great promise for automatic image segmentation. Published studies by others and our own research results strongly suggest that segmentation of a normal or near-normal object from 3D medical images will be most successful when the DSM approach uses 1) knowledge of the geometry of not only the target anatomic object but also the ensemble of objects providing context for the target object and 2) knowledge of the image intensities to be expected relative to the geometry of the target and contextual objects. The segmentation will be most efficient when the deformation operates at multiple object-related scales and uses deformations that include not just local translations but the biologically important transformations of bending and twisting, i.e., local rotation, and local magnification. In computer vision an important class of DSM methods uses explicit geometric models in a Bayesian statistical framework to provide a priori information used in posterior optimization to match the DSM against a target image. In this approach a DSM of the object to be segmented is placed in the target image data and undergoes a series of rigid and non-rigid transformations that deform the model to closely match the target object. The deformation process is driven by optimizing an objective function that has terms for the geometric typicality and model-to-image match for each instance of the deformed model. The success of this approach depends strongly on the object representation, i.e., the structural details and parameter set for the DSM, which in turn determines the analytic form of the objective function. This paper describes a form of DSM called m-reps that has or allows these properties, and a method of segmentation consisting of large to small scale posterior optimization of m-reps. Segmentation by deformable m-reps, together with the appropriate data representations, visualizations, and user interface, has been implemented in software that accomplishes 3D segmentations in a few minutes. Software for building and training models has also been developed. The methods underlying this software and its abilities are the subject of this paper

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Feature-Based Correspondences to Infer the Location of Anatomical Landmarks

    Get PDF
    A methodology has been developed for automatically determining inter-image correspondences between cliques of features extracted from a reference and a query image. Cliques consist of up to threefeatures and correspondences between them are determined via a hierarchy of similarity metrics based on the inherent properties of the features and geometric relationships between those features. As opposed to approaches that determine correspondences solely by voxel intensity, features that also include shape description are used. Specifically, medial-based features areemployed because they are sparse compared to the number of image voxels and can be automatically extracted from the image.The correspondence framework has been extended to automatically estimate the location of anatomical landmarks in the query image by adding landmarks to the cliques. Anatomical landmark locationsare then inferred from the reference image by maximizing landmark correspondences. The ability to infer landmark locations has provided a means to validate the correspondence framework in thepresence of structural variation between images. Moreover, automated landmark estimation imparts the user with anatomical information and can hypothetically be used to initialize andconstrain the search space of segmentation and registration methods.Methods developed in this dissertation were applied to simulated MRI brain images, synthetic images, and images constructed from several variations of a parametric model. Results indicate that the methods are invariant to global translation and rotation and can operate in the presence of structure variation between images.The automated landmark placement method was shown to be accurate as compared to ground-truth that was established both parametrically and manually. It is envisioned that these automated methods could prove useful for alleviating time-consuming and tedious tasks in applications that currently require manual input, and eliminate intra-user subjectivity
    corecore