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Medial representation of a three-dimensional (3-D) object or an
ensemble of 3-D objects involves capturing the object interior as a
locus of medial atoms, each atom being two vectors of equal length
joined at the tail at the medial point. Medial representation has a
variety of beneficial properties, among the most important of which
are 1) its inherent geometry, provides an object-intrinsic coordi-
nate system and thus provides correspondence between instances
of the object in and near the object(s); 2) it captures the object in-
terior and is, thus, very suitable for deformation; and 3) it provides
the basis for an intuitive object-based multiscale sequence leading
to efficiency of segmentation algorithms and trainability of statis-
tical characterizations with limited training sets. As a result of these
properties, medial representation is particularly suitable for the fol-
lowing image analysis tasks; how each operates will be described
and will be illustrated by results:

1) segmentation of objects and object complexes via deformable
models;

2) segmentation of tubular trees, e.g., of blood vessels, by fol-
lowing height ridges of measures of fit of medial atoms to
target images;

3) object-based image registration via medial loci of such blood
vessel trees;
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4) statistical characterization of shape differences between con-
trol and pathological classes of structures.

These analysis tasks are made possible by a new form of medial
representation called m-reps, which is described.

Keywords—Discrimination, medial, medical image, multiscale,
object, registration, segmentation, shape, statistics.

I. MEDIAL REPRESENTATIONS

In this paper, we are concerned with object representations
for use in three-dimensional (3-D) image analysis methods
such as segmentation, registration, and statistical characteri-
zation of geometric differences between classes. To support
these uses with regard to a population of “object(s),” i.e.,
single objects, such as kidneys or blood-vessel trees, or ob-
ject ensembles, such as a liver or kidney pair, it is necessary
that each member of the population be effectively captured
by the form of representation. For the image analysis ob-
jectives described in this paper, we desire that the resulting
models be useful for the following:

• statistical characterization of the geometry of a class of
object(s) [18] (see Section V);

• segmentation by deforming a model into image inten-
sity data (see Section III-A);

• segmentation by measuring the fit of the local primitive
from which the representation is formed to image data
either so that

• ridges of this measure can be used to define the
object (cf. Canny edges) (see Section III-B);

• local statistics of this measure can be used to lo-
cate an object section and find its geometric type
(slab, tube, sphere) (see [26]).

A variety of object representations have been suggested
for 3-D object representation, including landmark sets
(e.g., [12]), boundary point distribution models (e.g., [9]),
boundary basis function models (e.g., [25]), and atlas-based
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Fig. 1. 2-D figure shown in terms of its boundary, then in terms
of bitangent circles wholly interior to the figure, and finally, in
terms of medial atoms (see also Fig. 5 for the 3-D case). Individual
positions, circles, and medial atoms are shown at sample positions,
but in each case, the locus is continuous. The part of this figure that
forms the representation is shown in each case with bolder lines.

Fig. 2. Medial atom.

voxel displacement models (e.g., [8]). 3-D medial models
particularly fit the bill because of a variety of properties that
they have, most especially the following.

1) Their inherent geometry provides an object-intrinsic
coordinate system and, thus, provides positional and
orientational correspondence between instances of the
object in and near the object(s).

2) They directly capture the object interior in a compact
way and are, thus, computationally suitable for volu-
metric deformation.

3) They provide the basis for an intuitive object-based
multiscale sequence leading to efficiency of segmen-
tation algorithms and trainability of statistical charac-
terizations with limited training sets. In this sequence,
objects in an ensemble are described in relation to each
other, protrusions and indentations in an object are de-
scribed in relation to the figure from or into which they
extend, and positions interior to and on the boundary
of a figure are described in relation to the figure’s
geometry.

Medial representations of an object have traditionally been
seen in terms of the locus of centers and widths of spheres
(or in two-dimensional (2-D) circles) that are bitangent to the
boundary of the object (Fig. 1), and frequently they have been
seen in terms of the centers and widths of bitangent spheres
wholly within the object [6]. We have found that a more
useful, though mathematically equivalent way of seeing the
medial representation is as a locus of “medial atoms,” entities
made of a hub and two equal length spokes (Fig. 2). The hub
is a point at the center of the related bitangent sphere, and the
spokes are radii from the center to the points of bitangency.
With this view, with an unbranching medial locus for which
the locus of hubs forms a smooth surface, the two line seg-
ments making up the medial atoms of an unbranching medial
locus sweep out the interior of a spatial region that we call
a “figure” (Fig. 1). Any point in the interior can be reached
by choosing the correct medial atom and traveling an appro-
priate fraction of the radius out from the hub along one of
the spokes. This easy computation is in contradistinction to
the difficult computation of the set of interior points from a
representation giving just the object boundary.

Fig. 3. Section of tube (fine lines) with the cone of medial atoms
from a common hub (shown by sphere) intersecting the tube
boundary in a circle (dashed bold).

A special, albeit nongeneric case for medial represen-
tation are the tubular objects (or object sections)—those
with circular cross sections. In these possibly branching
tubes, each bitangent sphere is actually tangent to the tube
boundary everywhere in a circle (Fig. 3). The medial atoms
corresponding to such a bitangent circle share a common
hub and a common bisector of their spokes, and these medial
atoms are rotations of each other about their common spoke
bisector. The locus of the hubs is a space curve in this case,
and the common spoke bisector is tangent to this curve.
Thus, we can capture a tubular medial locus by a possibly
branching curvilinear locus of our ordinary two-spoked
medial atoms, with the convention that, for the tubular case,
all rotations about the curve’s tangent produce additional
valid medial atoms.

Blum [6] limited the medial locus to bitangent spheres
that were entirely interior to the boundary, and essentially all
of the image analysis work with the medial representation
has used this form of medial representation. However, with
our representations, calledm-reps, we insist only that the
medial atoms themselves be interior to the figure (thus,
in the case of and indentation figure, the atom will be
exterior to the object). Blum’s representation produces a
unique equivalent description to an object’s boundary, but
it produces a branching structure that is typically extremely
bushy and complex due to its sensitivity to small-scale
boundary pimpling or dimpling, and its branching structure
deterministically varies as the particular object instance
varies across the population of possible versions of that
object or across measurements of these objects from an
image. There are some interesting methods for extracting
medial models from boundaries (e.g., [24] and [30]) that
avoid the bushiness using notions of spatial scale, but even
those produce many different branching structures across
the population of possible versions of that object or across
measurements of these objects from an image. This property,
together with the difficulty of deciding at a branch which
is the continuation of the limb and which branch, makes
it hard to divide such a derived medial locus into figures
and subfigures, despite the fact that such subdivision is an
important capability of handling objects medially.

The great variability of a medial branching structure across
the population makes all of the traditional medial represen-
tations useless for the recognition or description of similarly
appearing objects. That property also makes the representa-

PIZERet al.: MULTISCALE MEDIAL SHAPE-BASED ANALYSIS OF IMAGE OBJECTS 1671



tion inappropriate for deformable model segmentation since
the branching topology would have to change as the object
deforms. Nevertheless, the mathematics of the relation be-
tween an object boundary and its equivalent Blum medial
axis, produced most completely by Giblin and Kimia [17], is
useful in dealing with the new medial representation that we
have developed, i.e., m-reps.

In contrast to the Blum case, in an m-rep, the medial
branching structure of an object into figures and attached
subfigures is fixed for the whole population by a training
stage. This structure is then fit either to an object given
by a boundary or to an image. Such medial determination
by fitting a medial model with a fixed branching structure
is a stable process in contrast to the unstable process of
inferring a medial structure from a single boundary. Smooth
boundaries are inferred from the medial structure and then
displaced along their normals by a boundary displacement
component of the m-rep to handle the small-scale pimples
or dimples or, in the case of tubes, the small-scale devi-
ations from circularity of the tubular cross sections. The
fixed branching structure allows a medial representation
to achieve its long noted potential in regard to the afore-
mentioned applications of segmentation and of statistical
characterization of the geometry of a class of object(s).

The mathematics of this synthesis of a boundary from a
medial representation has been developed by Damon [11]. In
this mathematics, the conditions for a given m-rep producing
a smooth unfolded boundary and the relation between the dif-
ferential geometry of the m-rep and the differential geometry
of the boundary are given.

The medial structure is determined by analyzing a popu-
lation of training objects starting from their boundaries [29].
This process is stabilized by the use of the population, or the
medial structure is known from anatomy; e.g., most blood-
vessel trees can be assumed to be trees of tubes with binary
branching.

Deformation of an m-rep with a fixed branching structure
allows stable segmentation and stable comparison of objects
in a population of a given name, e.g., the brain structures
called hippocampi. M-reps also allow a consistent description
of object ensembles, describing not only the individual
objects in an ensemble, but also the geometric relationships
between objects. In addition, m-reps allow access to image
data in coordinates that we call “object-intrinsic” because
they yield correspondences in spatial position and in spatial
directions across different instances of an object and its
associated image. It is thus easily possible to make image
templates in these object-intrinsic coordinates that allow
comparison with a particular target image relative to a
candidate object’s geometry.

Fig. 4 shows the basic primitive of medial representation
of the 3-D object(s), themedial atom, formed from a me-
dial hub point (visualized as a ball) from which issue two
spoke vectors of equal length (visualized as arrows). The
atom implies that a boundary approximately passes through
and is orthogonal to the ends. The atom carries its own coor-
dinate system, with the medial point forming the origin; the
bisector of the spokes, the orthogonal complement vector

Fig. 4. Medial atom (in bold), its coordinates, and its implied
boundary sections. (left) An atom internal to the medial locus.
(right) An atom at endpoints of the medial locus.

in the plane of the spokes, and their orthogonal complement
forming the coordinate frame, and the common spoke length

forming the unit of distance.
Image analysis of objects requires measuring the fit of the

object model or its primitives to the expected behavior of
image intensities near the object boundary or in and near the
interior of the object. This can be accomplished through the
measurement of the fit of a medial atombased on the be-
havior of the image function in the medial coordinates. For
example, one can measure the degree to which the image has
contrast of the appropriate polarity at and orthogonal to both
spoke ends. We call this scalar measurement of image match

, themedialnessof in the image.
Simple medial loci in 3-D represent solid elements called

figures. Figures are formed as 2-D sheets or space curves
of medial atoms. It can be shown that the vectormust be
orthogonal to this locus. Also, if the locus is a curve, the atom
must imply a circle of spokes formed by rotating the spokes
about the vector, with the boundary implied at each spoke
in the circle, and the associated medialness must integrate the
image match over all of these spokes.

Models are formed as sets of branching structures with
these simple medial loci as the roots and branches. At the
ends and branches of these structures, special properties
apply.

The following three forms of medial locus representations
have been described.

1) Linked lists of medial atoms that are next to each other
to within the resolution of the image data [2], [21]
(Fig. 9, left-hand side).

2) Discrete m-reps (dm-reps) whose figures are formed
as meshes or chains of discrete medial atoms [22]
(Fig. 5, top). In dm-reps, end atoms include a third
spoke formed in the direction of the bisector be-
tween the other two spokes and of length, with

(Fig. 4) controlling the sharpness of the crest.
Attached subfigures in dm-reps ride on the implied
boundary of a parent figure.

3) Continuous m-reps (cm-reps) whose figures are
formed as b-splines of [34] (Fig. 5,
bottom). The end curves of these medial manifolds
are places that satisfy , where the gradient
is taken with respect to Euclidean distance on the
medial manifold. At present, these are restricted to
single figure objects.
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Fig. 5. 3-D medial locus representations. (top) dm-rep. (bottom)
cm-rep.

In all of these, the boundary is easily computable from the
medial representation. The means of doing so from discrete
m-reps using a modified form of the subdivision surfaces
method [7] and constraints against boundary folding [11] has
been developed by Thall [31]1 .

M-reps provide object-intrinsic coordinates for all of
three-space included in a figure and exterior to it out to its
focal surface, with these coordinates being suited for shape
characterization by being magnification invariant at both
global and local levels of scale. For a single figure, these
figural coordinatesare . The coordinates
(or alone for tubular figures) characterize position on the
medial locus with distances along the locus measured in
-proportional terms. The coordinate indicates

which side of the medial locus the point is; for internal me-
dial points, or 1, and for medial locus endpoints,

runs continuously around the crest region connecting the
two boundary sides, going from1 to 0 at the crest to 1.
The coordinate measures the distance (in-proportional
terms) along spokes from the implied boundary with
outside the implied boundary, inside the implied
boundary, and at the medial locus. For multifigure
objects, the point’s closest figure must also be indicated
and, for dm-reps, a blend region between the subfigure and
its host figure must be computed with a coordinatetaking
one along the blend (Fig. 6, left-hand side). For object
ensembles [13], the geometric relationship of neighboring
objects are recorded: parts of the medially implied boundary
of one object that are near the neighbor are known not only
in its own figural coordinates, but also its neighbor’s figural
coordinates (Fig. 6, right-hand side).

In populations or deformations of object(s) represented by
a single branching topology, positional (and orientational and

1[Online]. Available: http://midag.cs.unc.edu/pubs/papers/Thall_TR02-
001.pdf

Fig. 6. Figural coordinates: (left) for blend regions of multifigure
objects and (right) for object ensembles: darker region of bladder
shows locations� bone< a threshold.

Fig. 7. Positionally corresponding points via figural coordinates.
(top left) Points in two-space. (top right) Boundary points in
a deforming kidney. (bottom) Boundary points in a statistical
principal component analysis medial atom eigenmode on a
hippocampus.

metric) correspondence between instances of the object(s)
is defined by having the same figural coordinates (Fig. 7).
Image intensities for any element of the population of objects
are also represented in an object-intrinsic and, thus, stable
way by using figural coordinates.

Medial representations allow representations at many
object- and figure-related scale levels. These allow the
characterization of geometric changes to have locality. They
lead to efficiency via coarse-to-fine algorithms and to stable
statistical characterizations with few training samples via
Markov random fields. The scale levels that we presently
use, together with the geometric transformations allowed at
each level and the neighboring entities at each scale level,
are given in Table 1. Each transformation is thought of as a
residue with respect to the larger scale levels.

II. M EDIAL REPRESENTATIONS OFPOPULATIONS OF

OBJECTS OROBJECTENSEMBLES

Using the method of Styner, one can take a training sample
from a population of objects, each represented as a char-
acteristic image, and produce a common figural topology
and dm-rep sampling that can be deformed into any member
of the population with a criterion level of accuracy. Let
be the geometric representation at scale level, and let
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Table 1
Geometry by Scale Level (Please Read the Two Portions of the
Horizontally Adjacent)

be the representation of theth primitive at scale level .
Each primitive has a small set of neighbors at scale
level (see Table 1) and a parent primitive at scale
level , but of the same type as . Also associated
with scale level is a type of transformation such that

. Let the parameters of that transforma-
tion represent the residue betweenat scale level and

at scale level . We do statistics via Markov random
fields by estimating the parameters of the probability dis-
tributions of ,
where the first term is measured by. This can be done,
for example, using a form of principal components analysis
adpated to Lie groups [14]. The object-intrinsic correspon-
dences given by the medial representation make such anal-
ysis possible. Estimating the probabilities class by class (e.g.,
for a control class and pathological class) allows the study of
the differences between the probability distributions at any
chosen scale level.

At any scale level, this representation and Markov sta-
tistics divide geometric distinctions between classes into
the geometric parameters described at that scale level. For
example, at the object scale level, distinctions are made in
translations, rotations, and uniform scalings. At the medial
atom (figural section) scale level, the representation divides
shape changes into natural categories of elongation, thick-
ening, bending, and twisting. At the boundary displacement
scale level, it allows the characterization of local properties
of surface texture.

III. SEGMENTATION VIA MEDIAL REPRESENTATIONS

A. Segmentation via Deformable m-rep Models

Segmentation of images by deforming an m-rep model,
detailed by Joshiet al. in [20], is based on a Bayesian
framework, scale level by scale level, coarse to fine. At
each scale level, the model is transformed to produce
the model for the next smaller scale. The paradigm at
each scale level is to find, from the transformations
appropriate to that scale level (see Table 1), that trans-
formation of template , producing , such as
to maximize the posterior data or equivalently to
maximize data , where

is the prior probability density capturing
the geometric typicality of the anatomic object residue
at , and data is the data likelihood function
capturing the image data-to-geometry relationship. At
each stage, we divide at into the sum of
a parent term and a neighbor term. The parent term is

, i.e., the log probability density of the residue
of relative to the parent . The neighbor term is

relative to its neighbors . At the medial
atom scale level, the relation to the neighbors guarantees
the smoothness of the medial manifold. Each level’s result
provides both an initial value and a prior for the primitives
at the next smaller scale level. The transformation at the
smallest scale level is a dense displacement field applied
to the boundary of the figure on the scale of the voxel
resolution of the imaging modality. As the vector field is
not medially based, the small-scale boundary features are
robustly accommodated.

We have begun estimating these probabilities from
training sets of objects. However, at present, the prior is
induced on the above transformation based on the displace-
ment of the implied boundary of the objects. Throughout,
an independent Gaussian prior on boundary displacement
is used with variance proportional to the local radius.
Good association between points on the original object
boundary and the deformed boundary is made using the
figural coordinate system describe in the above section.
At the boundary vertex scale level, the prior is induced on
the dense displacement field using a Markov random field
prior derived from energetics associated with thin elastic
membranes to guarantee smoothness.

Having defined the geometric typicality (prior) energetics,
we now define the data likelihood function measuring ge-
ometry to image match. In the future, we will compute this
function using multiscale probabilities, but at the present,
we compute it as the correlation between a predefined rms-
normalized zero-mean template image and the
rms-normalized version of the target image in the
neighborhood of the boundary implied by . The neigh-
borhood is defined by , a collar around , and
the integration in the correlation is along and . This
association between points in the template image and the
data image is made using the object intrinsic coordinate
system described above.
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Fig. 8. Result of kidney segmentation from CT by deformable
m-reps. The accuracy in this case is the median among the 24
kidneys extracted.

We have been using two basic types of templates: an ana-
lytical template computed from derivatives of the Gaussian
and an empirical template learned from an example image
from which the template medial model was built. Using the
data likelihood defined above and the prior defined in the
above section, the log posterior is defined as a weighted
sum of the two terms, with weights chosen by the user. For
optimizing the posterior with respect to the similarity trans-
formations at scale levels 1–3 and the local atom-by-atom
transformation at scale level 4, we use a conjugate gradient
optimization algorithm; for optimizing the posterior with re-
spect to the dense displacement field at the boundary vertex
scale level, we use a simple steepest decent algorithm.

To run the segmentation, the user takes a few seconds to
rigidly place the template model in the target data set. This
initialization of the algorithm is followed by the automatic
hierarchical segmentation, which, in the present implemen-
tation, takes under 5 min for convergence. This speed, for the
accuracy of segmentation produced, is a direct result of the
multiscale form of the object representation and, thus, of the
deformable model algorithm.

We have used this segmentation procedure for extracting
a variety of 3-D anatomic objects, of which one is the kidney
parenchyma plus the renal pelvis, in subjects undergoing
radiation treatment for cancer. In [23], we present results
on 24 kidney extractions from computed tomography (CT)
showing segmentation that succeeds in every case and has
an agreement with human segmentations comparable to that
of humans with each other (see Fig. 8 for an example).

B. Segmentation via Medial Representations of Tubular
Geometry

Tubular objects are multidimensional generalized cylin-
ders; their paths may be tortuous, may branch, and may
contain cycles; and their radii will vary smoothly along
those paths. In 3-D, magnetic resonance angiogram (MRA)
and X-ray CT images much of human anatomy appears
tubular, e.g., blood vessels, bronchi, bowel, nerves, and
selected bones.

In Section I, we indicated that tubes in 3-D can be
represented by a space curve of medial atoms, whose centers
form the central axis of the tube and whose spokes are rotated
about their bisector to generate the circularly symmetric
cross section that we take to be the definition of a tube.
The symmetry inherent in medial representations enables
simple and fast methods for generating tubular segmentations
using this representation from 3-D images and for registering
images according to those tubular structures. The general
approach is to find a locus of medial atoms that form a
maximum convexity ridge of medialness of the image, i.e.,
a 2-D maximum, orthogonal to the ridge, of the medial fit
to the image data.

We and others [1], [2], [4], [15] have developed such
methods for forming medial segmentations of tubular
objects that take particular advantage of the scale-space and
symmetry properties of images of tubes. In particular, for a
wide range of scales, a tubular object in an image will have
stable one-dimensional (1-D) central maximum convexity
ridge of the medialness function formed simply as image
intensity. By first solving for the central intensity ridge to
represent a central axis and then using that central axis to
stabilize a radius estimation process based on boundary
strength integrated around the circle of medial spokes,
medial representations of tubes can be quickly formed. By
incorporating optimal scale and zoom invariant measures
during traversal and radius estimation, the representation
generation process remains insensitive to intensity and
boundary noise. For example, given MRA volume data of
intra-cranial vasculature, the system can form represen-
tations of that vasculature with sub-voxel accuracy, i.e.,
an average error was less than 0.5 voxel and consistency
was sub-voxel such that greater than 80% of the central
axis points were within one voxel. The primary benefit of
decoupling the central-axis and radius estimation processes
is that the time to generate a representation is sped by the
isolation of their parameter spaces during optimization. For
example, extraction of over 400 vessel segments in a typical
intra-cranial MRA volume image requires approximately
15 min [1].

Our centerline extraction method operates by an iterative
dynamic-scale step-maximize procedure. The eigenvectors
of the local scaled Hessian of the image intensity medial-
ness function at one ridge point are used to approximate the
tangent and normal directions of the ridge (Fig. 9, left-hand
side). That normal plane is shifted in the tangent direction
to bound the search for a connecting ridge point at which
the next medial atom in the chain is centered. The local 2-D
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Fig. 9. (left) Eigenvectors (v , v , v ) of the local Hessian
approximate the tangent(v ) and normal(v ;v ) directions of the
ridge. Shifting the normal plane in the tangent direction bounds the
search for the next ridge point. (right) Series of binary medialness
kernels centered on and normal to the ridge are applied at different
scales to determine the local radius of the tube.

maximum intensity point in that plane is a ridge point if its
normal direction eigenvalues are negative. We also verify
that its cross-sectional intensities are circularly symmetric
by validating that the eigenvalues in the normal directions
are nearly equal. When singularities are encountered, we de-
tect the swapping of the eigenvectors of the Hessian, and
since singularities are nongeneric, slightly changing the scale
being used to traverse the ridge causes those singularities to
move or be destroyed and traversal along one branch con-
tinues. Our dynamic-scale traversal method passed across
branchpoints 90% of the time, depending on the level of
noise in the image. Furthermore, the method’s performance
was not statistically significantly dependent on its parame-
ters or initial conditions.

The local radius of the tube determines the scale of the
measures used during ridge traversal. The local radius of a
tube is determined by an additional 1-D maximum convexity
ridge operation (i.e., extremum) of medialness in the medial
atom’s dimension, as applied to a medialness function
on medial atoms centered on the previously extracted axis
curve, but with a variable radius and object angle. The
method evaluates multiple medialness kernels on neigh-
boring ridge points (Fig. 9, right-hand side), orienting those
kernels’ frames parallel and orthogonal to their axis curves,
and it thereby determines the radius of those kernels that
produces a maximal medialness response.

IV. REGISTRATION VIA MEDIAL REPRESENTATIONS OF

TUBULAR OBJECTS

The medial geometry of tubular objects can also be ex-
ploited to speed the registration of a tubular representation
to an image. The registration metric measures how well
the central axes in a representation map to the ridges in a
target image. The orientation and scale of the representations
are used to constrain a coarse-to-fine registration optimiza-
tion process such that a vessel curve segment whose medial
tangent vector is is only used to resolve alignment orthog-
onal to . The sparseness of the representations also speeds
the registration process. Representations formed using data
from one modality can be registered with data from different
modalities. Monte Carlo experiments demonstrate subvoxel
accuracy, subvoxel consistency, and registration times on the
order of seconds [3]. In Fig. 10, the vessel representations
from one CT scan of a patient are aligned with another scan

Fig. 10. Blood vessels from two liver CT scans have been
registered to capture blood inflow and outflow. The vessels are
shown with the right lobe of the liver to facilitate partial liver
transplant planning.

that captures a different vascular system. Viewing vessel
representations from both scans facilitates liver transplant
planning. These methods are also being used to register
preoperative vascular representations with intra-operative
images, such as 3-D ultrasound images, so that preopera-
tive plans can be overlaid onto the intra-operative data for
surgical guidance.

V. STATISTICAL SHAPE CHARACTERIZATION VIA MEDIAL

REPRESENTATIONS

Besides providing shape models for segmentation by de-
formable models, the parametrizations of geometric objects
provided by the various representations can also serve as a
data structure for statistical shape analysis. Medial repre-
sentations have particular strengths because their intrinsic
coordinates produce positional correspondences that lead to
sensitivity to small differences between classes of objects
and because the way they support multiscale representa-
tion and the related probabilistic representation by Markov
random fields allows training of the probabilities that is
efficient in the number of training samples required. In-
deed, there are a very large number of probability density
functions that must be trained (both a parent-relative and
a neighbor-relative density for each primitive at each
scale level), but each can be trained from the same training
sample, and the small number of parameters of each proba-
bility density leads to few training samples being required.

Neuroimaging is a research area where geometric analysis
can provide information about changes of brain structures
due to disease. Structural imaging studies thus far have most
often focused on volumetric assessment of brain structures,
e.g., full brain or hemispheric gray and white matter, ven-
tricular volume, and hippocampus. Increasing evidence for
structural changes in small subregions and parts of structures
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drive development of new structure analysis techniques. In
[33], Wang et al. found that, while hippocampal volume
did not discriminate schizophrenia groups from control
groups, shape measurements did provide a distinct group
separation. This paper further discusses that summary
comparisons of whole structures, as used in conventional
volumetric analysis, ignores the possibility of detecting
regional differences. Csernanskyet al. [10] suggests that a
full characterization of neuroanatomical abnormalities will
increase our understanding of etiology, pathogenesis, and
pathophysiology of schizophrenia. Results show that the
analysis of hippocampal shape discriminates schizophrenia
and control subjects with greater power than volumetry
[19]. All these studies and many studies by Toga and
Thompson [32] advocate new morphometry techniques
to study shape rather than gross volume and to provide
quantitative measures that are not only statistical significant,
but also neuroanatomically relevant and intuitive.

As discussed above, compared to other geometric param-
eterizations, m-reps provide advantages of locality and sen-
sitivity (when used as multiscale residues), intuitiveness of
results, and robustness against limited training samples. In
our research to date, we have found that when used glob-
ally, m-reps give similar results to other representations such
as point distribution models, voxel displacement models, and
spherical harmonic models. We illustrate the method with the
following clinical study of the shape of the lateral ventricles
in schizophrenia using dm-reps.

Lateral ventricle findings are often reported in neu-
roimaging studies. Ventricles are fluid space that are altered
in diseases causing brain atrophy, e.g., Alzheimer’s dis-
ease, or whose volume is affected by neuropathology, e.g.,
schizophrenia. We describe a study that serves an example
for many other ongoing morphometric brain studies. A
twin study includes healthy identical twins [monozygotic
(MZ)], nonidentical twins [dizygotic (DZ)], identical twins
discordant for schizophrenia (MZ–DS) (one co-twin schizo-
phrenic, other co-twin subject at risk), and nonrelated (NR)
subjects. This study allows us to test several hypotheses
related to genetics and disease, e.g., similarity of ventricle
shape among co-twins with varying genetic similarity, or
shape alteration of ventricles due to disease in the MZ–DS
group. The ventricle shapes were segmented from 3-D mag-
netic resonance images using automatic tissue classification
and manually guided postprocessing. The surfaces of the left
and right ventricles have been parametrized using spherical
harmonics [16], [27], [28], spatially aligned using Procrustes
fit of homologous surface points (PDM model [9]), and
transformed into medial m-rep representations [27]–[29]. In
this study, for each medial atom in the fixed topology m-rep,
the population of that particular atom is statistically studied.
The multiresolution residue approach discussed earlier will
be applied in future research.

Fig. 11 illustrates right and left ventricle pairs of co-twins
with an m-rep mesh and implied surface. The local radii are
overlaid as balls with varying size and color. Local width
differences between co-twins can be tested by comparing
the width attributes at mesh points that are homologous ac-

Fig. 11. Shape comparison of ventricles based on medial
representations. The larger figures represent the medial mesh with
width (radius) difference at corresponding mesh points. The size of
the disks indicate local differences between twins A and B in the
range of�0.3–1.5 mm.

Fig. 12. Statistics of ventricle similarities. The mean absolute
width differences at corresponding mesh points between co-twins
is shown for the three groups nonrelated pairs (180 pairs,
left), MZ twins (five pairs, middle) and DZ twins (five pairs,
right). The plot demonstrates that the DZ twin results could be
a subset of the population of unrelated pairs (nonsignificant
group differencep < 0:8562) with smaller variance due to the
larger age/gender/sibling similarity. The MZ twins, however, are
significantly different from the DZ (p < 0:0065) and from the
unrelated subjects (p < 0:0009).

cording to figural coordinates. Fig. 11 illustrates co-twin dif-
ferences of right, but not left ventricles, well localized in
the atrium part of the ventricles. Fig. 12 shows the result
of a statistical analysis of MZ versus DZ versus NR pairs.
The results demonstrate the better shape similarity of ventri-
cles of identical MZ twins as compared to DZ twins and NR
subjects.

Similar to the width attributes describing local growth,
we also analyzed figural bending by comparing the mesh
atom positions relative to a template and by measuring local
mesh curvature. In ongoing studies, we extend the single
figure analysis of lateral ventricles to multifigure analysis
of the whole ventricular system and, finally, to a multiob-
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ject analysis including ventricles in the context of abutting
structures (hippocampus, caudate nucleus, putamen, pallide
globe). Moreover, our studies of the hippocampus are being
extended [35] to leverage the properties of cm-reps that they
analytically parameterize a medial locus and, thus, provide
a basis for improvement of the homology across members
of the population of objects (here, hippocampi) via the reg-
istration (diffeomorphism of the medial locus) of geometric
measurements at a variety of scale levels.

VI. CONCLUSION

We have described the framework of stable medial rep-
resentation and its theoretical advantages for image anal-
ysis. By describing its use for a variety of segmentation,
registration, and statistical shape characterization objectives,
we have illustrated the usefulness of this framework. Our
work in these areas continues. In particular, there are many
steps left in the full development of the statistical framework
based on Markov residues and its use for both segmentation
and shape characterization. Also, methods and programs for
the use of multifigure and multiobject models [13] are well
along, but require further work. Additional validations are
on our agenda. Also, mechanical methods on m-rep models
to estimate and analyze intrapatient deformations are being
developed.
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