990 research outputs found

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    A Tensor Approach to Learning Mixed Membership Community Models

    Get PDF
    Community detection is the task of detecting hidden communities from observed interactions. Guaranteed community detection has so far been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we remove this restriction, and provide guaranteed community detection for a family of probabilistic network models with overlapping communities, termed as the mixed membership Dirichlet model, first introduced by Airoldi et al. This model allows for nodes to have fractional memberships in multiple communities and assumes that the community memberships are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model as a special case. We propose a unified approach to learning these models via a tensor spectral decomposition method. Our estimator is based on low-order moment tensor of the observed network, consisting of 3-star counts. Our learning method is fast and is based on simple linear algebraic operations, e.g. singular value decomposition and tensor power iterations. We provide guaranteed recovery of community memberships and model parameters and present a careful finite sample analysis of our learning method. As an important special case, our results match the best known scaling requirements for the (homogeneous) stochastic block model

    Differential fast fixed-point algorithms for underdetermined instantaneous and convolutive partial blind source separation

    Full text link
    This paper concerns underdetermined linear instantaneous and convolutive blind source separation (BSS), i.e., the case when the number of observed mixed signals is lower than the number of sources.We propose partial BSS methods, which separate supposedly nonstationary sources of interest (while keeping residual components for the other, supposedly stationary, "noise" sources). These methods are based on the general differential BSS concept that we introduced before. In the instantaneous case, the approach proposed in this paper consists of a differential extension of the FastICA method (which does not apply to underdetermined mixtures). In the convolutive case, we extend our recent time-domain fast fixed-point C-FICA algorithm to underdetermined mixtures. Both proposed approaches thus keep the attractive features of the FastICA and C-FICA methods. Our approaches are based on differential sphering processes, followed by the optimization of the differential nonnormalized kurtosis that we introduce in this paper. Experimental tests show that these differential algorithms are much more robust to noise sources than the standard FastICA and C-FICA algorithms.Comment: this paper describes our differential FastICA-like algorithms for linear instantaneous and convolutive underdetermined mixture
    • …
    corecore