6,719 research outputs found

    The RFID PIA – developed by industry, agreed by regulators

    Get PDF
    This chapter discusses the privacy impact assessment (PIA) framework endorsed by the European Commission on February 11th, 2011. This PIA, the first to receive the Commission's endorsement, was developed to deal with privacy challenges associated with the deployment of radio frequency identification (RFID) technology, a key building block of the Internet of Things. The goal of this chapter is to present the methodology and key constructs of the RFID PIA Framework in more detail than was possible in the official text. RFID operators can use this article as a support document when they conduct PIAs and need to interpret the PIA Framework. The chapter begins with a history of why and how the PIA Framework for RFID came about. It then proceeds with a description of the endorsed PIA process for RFID applications and explains in detail how this process is supposed to function. It provides examples discussed during the development of the PIA Framework. These examples reflect the rationale behind and evolution of the text's methods and definitions. The chapter also provides insight into the stakeholder debates and compromises that have important implications for PIAs in general.Series: Working Papers on Information Systems, Information Business and Operation

    Cryptanalysis of two mutual authentication protocols for low-cost RFID

    Full text link
    Radio Frequency Identification (RFID) is appearing as a favorite technology for automated identification, which can be widely applied to many applications such as e-passport, supply chain management and ticketing. However, researchers have found many security and privacy problems along RFID technology. In recent years, many researchers are interested in RFID authentication protocols and their security flaws. In this paper, we analyze two of the newest RFID authentication protocols which proposed by Fu et al. and Li et al. from several security viewpoints. We present different attacks such as desynchronization attack and privacy analysis over these protocols.Comment: 17 pages, 2 figures, 1 table, International Journal of Distributed and Parallel system

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    AnonPri: A Secure Anonymous Private Authentication Protocol for RFID Systems

    Get PDF
    Privacy preservation in RFID systems is a very important issue in modern day world. Privacy activists have been worried about the invasion of user privacy while using various RFID systems and services. Hence, significant efforts have been made to design RFID systems that preserve users\u27 privacy. Majority of the privacy preserving protocols for RFID systems require the reader to search all tags in the system in order to identify a single RFID tag which not efficient for large scale systems. In order to achieve high-speed authentication in large-scale RFID systems, researchers propose tree-based approaches, in which any pair of tags share a number of key components. Another technique is to perform group-based authentication that improves the tradeoff between scalability and privacy by dividing the tags into a number of groups. This novel authentication scheme ensures privacy of the tags. However, the level of privacy provided by the scheme decreases as more and more tags are compromised. To address this issue, in this paper, we propose a group based anonymous private authentication protocol (AnonPri) that provides higher level of privacy than the above mentioned group based scheme and achieves better efficiency (in terms of providing privacy) than the approaches that prompt the reader to perform an exhaustive search. Our protocol guarantees that the adversary cannot link the tag responses even if she can learn the identifier of the tags. Our evaluation results demonstrates that the level of privacy provided by AnonPri is higher than that of the group based authentication technique

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique

    In Things We Trust? Towards trustability in the Internet of Things

    Full text link
    This essay discusses the main privacy, security and trustability issues with the Internet of Things

    Practical Schemes For Privacy & Security Enhanced RFID

    Full text link
    Proper privacy protection in RFID systems is important. However, many of the schemes known are impractical, either because they use hash functions instead of the more hardware efficient symmetric encryption schemes as a efficient cryptographic primitive, or because they incur a rather costly key search time penalty at the reader. Moreover, they do not allow for dynamic, fine-grained access control to the tag that cater for more complex usage scenarios. In this paper we investigate such scenarios, and propose a model and corresponding privacy friendly protocols for efficient and fine-grained management of access permissions to tags. In particular we propose an efficient mutual authentication protocol between a tag and a reader that achieves a reasonable level of privacy, using only symmetric key cryptography on the tag, while not requiring a costly key-search algorithm at the reader side. Moreover, our protocol is able to recover from stolen readers.Comment: 18 page
    • …
    corecore